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1 Introduction 
Streamflow duration assessment methods (SDAMs) are rapid, field-based methods to determine 
flow duration class at the reach scale. The development of beta SDAMs for the Northeast and 
Southeast regions (hereafter referred to as the NE and SE) followed the conceptual framework 
and process steps presented by Fritz and others (2020) to integrate the three key components of 
an SDAM development study: hydrological data, indicators, and study reaches.  

This supplemental document describes the data collection, data analysis, and evaluation steps 
that resulted in the beta SDAMs for the NE and SE. This document is available to inform public 
review and comment on the beta method, as well as serving as a companion to the beta SDAMs 
NE and SE for those that are interested in more background on the development of the methods 
and the underlying data. For a complete description of the beta SDAMs NE and SE protocol, 
please see the User Manual (James et al. 2023,  https://www.epa.gov/system/files/documents/ 
2023-04/Literature-Review-Beta-SDAM-NE-and-SE.pdf). The data used to develop the beta 
SDAMs NE and SE can be found here: (https://doi.org/10.23719/1528743). For more information 
on the collaborative effort between the U.S. Environmental Protection Agency (EPA) and the U.S. 
Army Corps of Engineers (Corps) to develop regional SDAMs for nationwide coverage, please see: 
https://www.epa.gov/streamflow-duration-assessment. 

1.1 Streamflow Duration Classes 
Streamflow duration governs important ecosystem functions (such as support for aquatic life, 
sediment transport, and biogeochemical processing rates), and streamflow duration classes are 
often used to guide watershed management decisions, including assessing the applicability of 
water quality standards. Our definitions of streamflow duration classes follow those used by 
Nadeau (2015): 

• Ephemeral reaches flow only in direct response to precipitation. Water typically flows 
only during and/or shortly after large precipitation events, the streambed is always 
above the water table, and stormwater runoff is the primary water source.  

• Intermittent reaches contain sustained flowing water for only part of the year, typically 
during the wet season, where the streambed may be below the water table or where 
the snowmelt from surrounding uplands provides sustained flow. The flow may vary 
greatly with stormwater runoff.  

• Perennial reaches contain flowing water continuously during a year of normal rainfall, 
often with the streambed located below the water table for most of the year. 
Groundwater typically supplies the baseflow for perennial reaches, but the baseflow 
may also be supplemented by stormwater runoff or snowmelt. 

For these definitions, a reach is a section of stream or river along which similar hydrologic 
conditions exist (e.g., discharge, depth, velocity, or sediment transport dynamics) and 
consistent drivers of hydrology are evident (e.g., slope, substrate, geomorphology, or 

https://www.epa.gov/system/files/documents/%202023-04/Literature-Review-Beta-SDAM-NE-and-SE.pdf
https://www.epa.gov/system/files/documents/%202023-04/Literature-Review-Beta-SDAM-NE-and-SE.pdf
https://doi.org/10.23719/1528743
https://www.epa.gov/streamflow-duration-assessment
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confinement). A channel is an area that is confined by banks and a bed and contains flowing 
water (continuously or not). 

1.2 Overview of the Beta Method for the Northeast Southeast   
The beta SDAMs for the NE and SE use a small number of indicators to predict the streamflow 
duration class of stream reaches. All indicators are measured during a single field visit. The beta 
SDAMs for the NE and SE result in one of four possible classifications: ephemeral, intermittent, 
perennial, or at least intermittent. The latter category occurs when an intermittent or perennial 
classification cannot be made with high confidence, but an ephemeral classification can be ruled 
out.  

The tool uses a machine learning model known as random forest (Figure 1). Random forests are 
comprised of ensembles of decision trees. Random forest models are increasingly common in the 
environmental sciences because of their superior performance in handling complex relationships 
among indicators used to predict classifications (Breiman 2001, Cutler et al. 2007, Ellis et al. 
2012). Random forests are well-suited handling different datatypes (i.e., Boolean, numeric, 
ordinal, categorical) that are present in the NE and SE datasets. They are appropriate for high-
dimensional datasets and are generally capable of capturing interacting and non-linear 
relationships well. Because they are trained on different random subsets of the training data, the 
models are robust and typically perform well on novel data. This approach was previously used 
to develop regional SDAMs for the Pacific Northwest (PNW; Nadeau et al. 2015, Nadeau 2015), 
Arid West (AW; Mazor et al. 2021a, Mazor et al 2021b), Western Mountains (WM; Mazor et al. 
2021c, Mazor et al. 2022), and Great Plains (GP; James et al. 2022, Eddy et al. 2022). Therefore, 
the use of random forests in developing the beta SDAMs for the NE and SE was an a priori decision 
that built on the findings of previous SDAMs. 
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Figure 1. Random forest procedure used to determine a flow classification. 

2 Development of the Beta Northeast and Southeast SDAMs   
The specific data analysis steps described in this document follow the approach used to develop 
and evaluate the beta SDAM WM (Mazor et al. 2022) and the beta SDAM GP (Eddy et al. 2022). 

2.1 Study Area  
The NE and the SE regions (based on Wohl et al. 2016) include states along the Atlantic and Gulf 
coasts (including Puerto Rico and the U.S. Virgin Islands), extending into the Midwest as far as 
southeast Missouri (Figure 2). The NE includes all or part of 21 states and is considered those 
areas dominated by forest-type vegetation where snowmelt contributes at least some flow to 
streams and rivers during the year. Average yearly precipitation ranges widely across the region, 
but most areas receive between 40 and 50 inches of precipitation per year, on average. The SE 
includes all or part of 12 states or territories and is considered those areas characterized by 
forest-type vegetation that are generally dominated by diverse types of rainfall runoff rather than 
snowmelt, including tropical storms and hurricanes. Average yearly precipitation also ranges 
widely across the SE region, but most areas receive between 50 and 60 inches of precipitation 
per year, on average. Ephemeral and intermittent reaches may be found at any position within a 
watershed but are more common in smaller headwaters, where flow accumulation is insufficient 
to sustain longer-duration flows (Fritz et al. 2008). Ephemeral and intermittent reaches may also 
be more common along the western boundary of the SE region and more southern parts of the 
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NE, where average yearly precipitation totals are lowest (40 inches or less), and 
evapotranspiration is relatively high (Hammond et al. 2021). 

The NE and SE regions as defined above include many metropolitan areas, including the New York 
City area (largest by population), Houston, Philadelphia, Baltimore-Washington D.C., Miami, and 
Atlanta, as well as some of the nation’s fastest growing cities, such as Orlando, Raleigh-Durham, 
and Charlotte. Thus, there are places within the NE and SE where the need for an SDAM in 
permitting and management programs is, or continues to be, particularly high. In addition, 
development associated with oil and natural gas, as well as agricultural uses that may require 
more and/or modified water sources due to climate change, occur across the NE and SE (Vengosh 
et al. 2014, Perkin et al. 2017). North Carolina developed its own SDAM (NC SDAM) for statewide 
use in streams of all sizes and flow durations (NCDWQ 2010, Dorney and Russell 2018), which has 
served as a model for other methods developed in the NE and SE region, such as those developed 
for Tennessee (TDEC 2020) and parts of Virginia (e.g., James City County 2009). Both the North 
Carolina and Tennessee methods were developed to comply with Section 401 and state level 
rules (e.g., riparian buffers in NC), while the James City County method was developed to comply 
with requirements under the Virginia Chesapeake Bay Preservation Act. Ohio also has an SDAM 
(OH SDAM) for headwater streams (drainage areas <1.0 sq. mile; OH EPA 2020) which was 
developed to differentiate among classes of small headwater streams for appropriate 
characterization for aquatic life use designation. 
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Figure 2. Map of SDAM study regions (based on Wohl et al. 2016). The beta SDAM NESE applies to the Northeast 
and Southeast regions as shown. Note, U.S. territories in the Caribbean Sea (Puerto Rico and the US Virgin 

Islands, inset) are not covered by the SE beta method though they were included in sampling. 
 

2.2 Preparation and Candidate Indicators 
At the outset of the project, a regional steering committee (RSC) was established consisting of 
technical staff at Corps Districts and EPA Regional Offices in the NE and SE regions that manage 
programs where streamflow duration information is often needed (e.g., Clean Water Act 
programs, including permits and enforcement). RSC members were selected based on their 
expertise in both scientific and programmatic elements relevant to streamflow duration 
classification needs. The RSC served several functions in the development process, such as 
reviewing technical products, facilitating connections with local experts, identifying resources 
such as sources of hydrologic data, and providing input on the model selection.  

Candidate indicators were identified that are supported by the scientific literature (James et al. 
2022) or used in previous SDAMs, including the SDAM PNW (Nadeau 2015) and others 
developed in the NE or SE  as mentioned above (e.g., NCDWQ 2010, OH EPA 2020). Following 
input from the RSC, these candidate indicators were then screened using the criteria described 
by Fritz and co-authors (2020), including:  

Primary criteria 

• Consistency: Does the indicator consistently discriminate among flow duration classes 
(e.g., demonstrated in multiple studies)? 
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• Repeatability: Can different practitioners take similar measurements, given sufficient 
training and standardization? 

• Defensibility: Does the indicator have a rational mechanistic relationship with flow 
duration, as either a response or a driver? 

• Rapidness: Can the indicator be measured during a one-day reach-visit (even if 
subsequent lab analyses are required)? 

• Objectivity: Does the indicator rely on objective (often quantitative) measures, as 
opposed to subjective judgments of practitioners? 

Secondary criteria 
• Robustness: Does human activity complicate indicator measurement or interpretation 

(e.g., poor water quality may affect the expression of some biological indicators)? 
• Practicality: Can practitioners realistically sample the indicator with typical capacity, 

skills, and resources? 

Candidate indicators were included in the study (Table 1) if they met all the primary criteria or 
at least one of the secondary criteria. Desktop geospatial indicators (derived using a geographic 
information system and applicable spatial datasets) that characterize mechanisms affecting 
flow duration and have been explored in other flow duration classification tools (e.g., Eng et al. 
2016, Jaeger et al. 2019, Mazor et al. 2021c) were also included in the analysis. 

Table 1. Candidate indicators evaluated in the present study. Indicators in the Origin column identified with “NC” 
followed the NC method protocol (NCDWQ 2010), with “NM” followed the NM method protocol (NMED 2011), 

with “OH” followed the Ohio protocol (OEPA 2020), and with “PNW” followed the PNW protocol (Nadeau 2015); 
other indicators (OTH) were measured with protocols developed for this study (USEPA 2020) and derived from 
sources resulting from a literature review completed by James et al. (2022) or recommendations from the RSC. 

Asterisks (*) indicate hydrologic indicators that are considered direct measures of water presence.  
Candidate indicator Description Origin 
Geomorphic indicators 
 Channel continuity Visual estimate of the continuity of bank and streambed 

development 
NC 

 
Sinuosity Visual estimate of the curviness of the stream channel NC  
Bankfull width Width of the channel at bankfull height PNW  
Floodplain channel 
dimensions 

Visual estimate of the extent of channel entrenchment and 
connectivity to the floodplain 

NM 

 
Particle size of 
stream substrate 

Visual estimate of the extent of evidence of substrate sorting 
within the channel 

NC 

 Slope Valley slope measured with a handheld clinometer PNW  
In-channel 
structure/ riffle pool 
sequence 

Visual estimate of the diversity and distinctiveness of riffles, 
pools, and other flow-based microhabitats 

NC 

 Active or relict 
floodplain 

Visual estimate of floodplain characteristics adjacent to stream 
channel 

NC 
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Candidate indicator Description Origin 
 Depositional bars or 

benches 
Visual estimate of the extent of alluvial bars and/or benches 
present in the channel 

NC 

 Recent alluvial 
deposits 

Visual estimate of recently deposited alluvium in the channel 
and on the floodplain 

NC 

 Headcuts Visual estimate of the size and number of headcuts in the 
channel 

NC 

 Grade control Visual estimate of the extent and kinds of grade control 
features in the channel 

NC 

 Natural valley Visual estimate of the extent of valley definition (proportion of 
catchment area sloping to the valley bottom). 

NC 

 Sediment deposition 
on plants and debris 

Visual estimate of the extent of evidence of sediment 
deposition on plants and on debris within the floodplain 

NC 

Hydrologic indicators  
Surface and 
subsurface flow* 

Estimate of the percent of the reach-length with surface and 
subsurface flow 

PNW 

 
Isolated pools* Number of pools in the channel without any connection to 

flowing surface water 
PNW 

 
Presence of 
baseflow* 

Visual estimate of the extent of surface flow from groundwater 
discharge in the channel 

NC 
 

Seeps and springs* Presence/absence of springs or seeps within one-half channel 
width of the channel 

NM 

 
Hydric soils Presence/absence of hydric soils within the channel, measured 

at up to three locations 
NC 

 Leaf litter Visual estimate of the extent of the streambed area covered by 
leaf litter 

NC 

 Maximum pool 
depth* 

Measurement of deepest pool, in centimeters OH 

 Organic drift lines Visual estimate of the size and distribution of organic debris 
accumulations in and along channels. 

NC 

 
Soil moisture and 
texture* 

Extent of soil saturation and texture measured at three 
locations in the channel 

OTH 

 
Woody jams Number of woody jams within the channel OTH 

Biological indicators  
Live or dead algal 
cover 

Visual estimate of the percent of streambed covered by live or 
dead algal growth 

OTH 

 
Stream shading Percent shade-providing cover above the streambed measured 

with a densiometer at three locations 
OTH 

 Hydrophytic plant 
species (channel 
only) 

Number of OBL or FACW-rated plants (as listed in Lichvar et al. 
2016) growing within the channel 

NC 

 
Hydrophytic plant 
species 

Number of all OBL or FACW-rated plants (as listed in Lichvar et 
al. 2016) growing within the channel or one half-channel width 
from the channel 

PNW 
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Candidate indicator Description Origin  
Fish Estimate of the overall abundance of fish (other than non-

native mosquitofish) in the channel  
NC 

 
Aquatic 
invertebrates 

Estimate of the overall abundance and richness of aquatic 
invertebrates within the channel 

NC 

 Aquatic mollusks Estimate of the overall abundance and richness of aquatic 
mollusks within the channel 

NC 

 Crayfish Abundance of crayfish and palaeomonid shrimp (Decapoda) 
within the channel 

NC 
 

Amphibians Estimate of the overall abundance and richness of amphibians 
within the channel 

NC 
 

Bryophytes Visual estimate of the percent of streambed and banks covered 
by live or dead mosses or liverworts 

OTH 

 
Differences in 
vegetation (riparian 
corridor) 

Visual estimate of the distinctiveness of vegetation in the 
riparian corridor compared to surrounding upland vegetation 

NM 

 
Absence of upland 
rooted plants in the 
streambed 

Visual estimate of the extent of upland rooted plants growing 
within the streambed 

NC 

 Fibrous roots in 
streambed 

Visual estimate of the extent and distribution of non-woody, 
small diameter roots of water-intolerant plants in the 
streambed 

NC 

 Fibrous roots in 
streambed 

Visual estimate of the extent and distribution of non-woody, 
small diameter roots of water-intolerant plants in the 
streambed 

NC 

 Presence of iron-
oxidizing fungi or 
bacteria 

Presence of oily sheens indicative of iron-oxidizing fungi or 
bacteria within the assessment reach 

NC 

Geospatial indicators 
 Elevation Elevation above mean sea level OTH 

 Drainage area Drainage area measured using USGS StreamStats or National 
Mapper 

OH 

 Long-term normal 
precipitation and 
temperature 

30-y normal mean annual and monthly precipitation, and 30-y 
normal mean, maximum, and minimum annual temperature 
(PRISM climate data; Hart and Bell 2015). 

OTH 

 Long-term mean 
snow persistence (1 
January to 3 July) 

Snow persistence (Hammond et al. 2017) OTH 

 Region Northeast or Southeast OTH 

 Stream Order  Strahler stream order from USGS StreamStats synthetic 
network (first, second, or greater than second order) 

NC 
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2.3 Candidate Reach Identification and Data Collection 
The two objectives in selecting candidate reaches for this study were as follows: first, to include 
a sufficient number of reaches in each streamflow duration class to characterize variability in 
indicator measurements; and second, to select reaches representing the range of key natural 
and disturbance gradients within the NE and SE to support applicability of the method across 
anticipated conditions (Figure 3).  

 

Figure 3. The Northeast and Southeast regions; study reaches sampled in support of the beta SDAMs for the NE 
and SE. 

 

To screen reaches for use in method development, first a list of 8,712 candidate study reaches 
(5,494 in NE and 3,218 in SE) were compiled based on existing hydrologic data records (e.g., 
U.S. Geological Survey (USGS) stream gages, water presence loggers, wildlife cameras, field 
photos), published studies, and interviews with local experts familiar with the specific reach’s 
hydrology. Most of these reaches (4,507 in NE and 2,591 in SE) were derived from the database 
of stream gages operated by the USGS and 4,330 (96%) in NE and 2,225 (86%) in SE were 
perennial. Actual streamflow duration class was determined by applying the flowchart in Figure 
4, which was informed by existing definitions (Hedman and Osterkamp 1982, Hewlett 1982). 
Consequently, other sources were required to identify candidate ephemeral and intermittent 
reaches. Another 1,614 candidate study reaches (987 in NE and 627 in SE) were identified from 
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published studies or consultation with local experts. Whenever possible, multiple sources of 
hydrologic information were used to confirm actual streamflow classifications. In the resulting 
set of candidate reaches, 5% were determined to be ephemeral, 13% were intermittent, and 
81% were perennial. 

Reaches were prioritized for study inclusion based on being accessible (e.g., on public property 
or with landowner permission), being wadable, and the number and type of data sources 
available to determine actual streamflow duration classification. Reaches where streamflow 
duration class could be determined based on multiple data sources (e.g., water presence 
loggers and expert knowledge) were categorized as “preferred” for study inclusion. Reaches 
classified based solely on interpretation of USGS stream gage data without consultation of a 
local expert were categorized as “USGS gage” reaches. Reaches classified through local 
expertise alone were categorized as “acceptable” and included in the study to fill gaps in study 
regions where an insufficient number of “preferred” and “USGS gage” reaches classified as 
intermittent or ephemeral could be identified.  

 

Figure 4. Flowchart used to determine actual streamflow duration class of reaches based on continuous 
measures of water presence (e.g., USGS stream gages). DOR: days of record. Zyear: Average number of dry days 
per year. Myear: Average length of longest continuous wet period per year, in days. For USGS gages, at least 20 

years of data were analyzed whenever possible (Kelso and Fritz 2021).  
 

Of the 8,712 candidate reaches, 388 (202 in NE and 186 in SE) study reaches were sampled 
from October 2020 to October 2022. These study reaches were parsed into ‘instrumented’ and 
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‘single-visit’ reaches1. Instrumented reaches (117 in NE and 120 in SE) were visited multiple 
times (up to four), and each had at least one Stream Temperature, Intermittence, and 
Conductance (STIC; Chapin et al. 2014) logger deployed, with all instrumented reaches having 
duplicate data loggers installed by the second field visit. Instrumented reaches generally had 
fewer existing lines of evidence to determine actual streamflow duration classification before 
sampling; therefore, post-sampling reach classifications were reviewed in light of the STIC 
logger data and hydrology indicator data that were direct measures of water presence collected 
during each visit. For further details on STIC data loggers and their verification/calibration, 
deployment, and data retrieval, see Schumacher and Fritz (2019). Single-visit reaches (85 in NE 
and 66 in SE) were visited once (with a 10% resample) and did not have loggers deployed. 
Because actual streamflow duration classification of most single-visit reaches was determined 
using existing data collected by USGS and others, these reaches generally had multiple direct 
flow duration data sources. Ultimately, due to data loss from STIC loggers and other factors, 
actual streamflow duration class at 33 reaches (30 instrumented and three single-visit reaches) 
could not be determined with confidence and were excluded from analysis used to develop the 
beta SDAMs for the NE and SE. In addition, 19 sites from Puerto Rico and U.S. Virgin Islands 
were excluded from the SE dataset for reasons described below. Of the remaining 336 study 
reaches used to develop the beta SDAMs for the NE and SE, 71 were ephemeral, 150 were 
intermittent, and 115 were perennial (Table 2). 

Table 2. Distribution of reaches used to develop the beta SDAMs for the NE and SE. Instrumented reaches were 
visited up to four times and had Stream Temperature, Intermittence, and Conductance loggers installed and 

single-visit reaches were visited once (rarely, twice) and did not have loggers installed. 

Class 
Single-Visit Instrumented 

Total Gaged Preferred Gaged Preferred Acceptable 
Ephemeral 3 31 0 10 27 71 

Northeast 3 15 0 7 13 38 
Southeast 0 16 0 4 13 33 

Intermittent 14 44 4 20 68 150 
Northeast 10 26 2 9 39 86 
Southeast 4 18 2 11 29 64 

Perennial 20 24 6 16 49 115 
Northeast 12 17 5 8 24 66 
Southeast 8 7 1 8 25 49 

 

During each field visit to a study reach, the suite of candidate indicators (Table 3) was measured 
following the development protocol (USEPA 2019). This compilation of indicators from a single 
field visit constitutes one reach sample (or observation) in terms of the analyses described 
within this data analysis supplement. Surrounding land use may affect or disturb streamflow 

 
1 These reaches were termed ‘baseline’ and ‘validation’, respectively, in prior beta SDAMs but have been renamed 
for clarity. 
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duration indicators without substantially shifting flow duration at reaches (e.g., changes in 
water quality). Up to two predominant land use categories within a 100-m radius of each study 
reach were noted on each field visit. If “urban” or “agriculture” were the identified land use 
category the sample was considered disturbed; otherwise, the sample was considered not 
disturbed for comparisons of beta NE and SE SDAM performance. 

2.4 Data analysis 
2.4.1 Metric calculation 
Candidate indicator data were used to create 96 candidate metrics, of which 42 were biological, 
14 were geomorphological, five were hydrologic (indirectly measured water presence), and 35 
were geospatial (Table 3). Note, additional metrics were developed and introduced during the 
model refinement steps and are discussed below in Section 2.4.4.  

As in the development of previous SDAMs, direct measures of water were excluded from the 
analysis. Metrics that directly measure water (e.g., soil moisture, number of isolated pools, 
water in channel) can greatly increase performance. However, such metrics introduce 
circularity (because water presence was used to confirm and update actual streamflow 
duration classes in the development data set) and may degrade the ability of the SDAM to 
perform well during atypical conditions, such as drought. Although such metrics might provide 
valuable supporting information in an assessment, including it in the SDAM could introduce 
circularity and reduce acceptance of the tool (Mazor et al. 2021b). Therefore, only indirect 
measures of water presence (e.g., hydric soils and number of woody jams) were included in the 
development of a beta method for the NE and SE regions. 
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Table 3. Candidate metrics evaluated for the development of the beta SDAMs for the NE and SE. Please see Appendix A for full definitions of candidate metrics. Abbreviations 
in candidate metric names include – EPT: Ephemeroptera, Plecoptera, and Trichoptera insect orders. GOLD: Gastropoda, Oligochaeta, and Diptera invertebrate groups. OCH: 

Odonata, Coleoptera, and Heteroptera insect orders. For Type the following categories apply – Ord: Ordinal metrics. Cat: Categorical metrics. Bin: Binary metrics. Con: 
Continuous metrics. The following fields provide the screening criteria – PctDom: Percent of reach samples with the most common value (typically zero). Min: minimum value. 

Max = maximum value. Range: Maximum possible value minus minimum possible value for the candidate metric. PvIvE: F-statistic from a comparison of mean values at 
perennial, intermittent, and ephemeral reaches. EvALI: Absolute t-statistic from a comparison of mean values at ephemeral and at least intermittent reaches. PvNP: Absolute 
t-statistic from a comparison of mean values at perennial and non-perennial reaches. PvIWet: Absolute t-statistic from a comparison of mean values at flowing intermittent 

and perennial reaches. EvIdry: Absolute t-statistic from a comparison of mean values at non-flowing intermittent and ephemeral reaches. rf_MDA: Metric importance from a 
random forest model, measured as mean decrease in accuracy. Screened: Indicates if the metric passed or failed screening criteria in Table 4. NA: Not applicable. 

Candidate metrics Group Type PctDom Min Max Range PvIvE EvALI PvNP PvIwet EvIdry rf_MDA Screened 

MeanSnowPersistence_01 GIS Con 1% 0.0 44.9 44.9 16.70 7.48 4.28 2.68 3.54 0.01 Pass 

MeanSnowPersistence_05 GIS Con 1% 0.1 45.1 45.0 16.61 7.62 4.21 2.56 3.66 0.01 Pass 

MeanSnowPersistence_10 GIS Con 1% 0.2 45.4 45.2 15.68 7.33 4.10 2.45 3.58 0.01 Pass 

ppt GIS Con 1% 772.7 1717.3 944.6 4.00 1.48 2.77 3.18 1.85 0.01 Pass 

ppt.m01 GIS Con 1% 32.3 154.4 122.1 1.96 1.00 1.30 0.73 1.99 0.01 Fail 

ppt.m02 GIS Con 1% 33.0 147.8 114.8 1.40 1.90 0.42 0.41 1.95 0.01 Fail 

ppt.m03 GIS Con 1% 45.0 158.5 113.5 2.66 2.44 1.05 0.73 2.35 0.01 Pass 

ppt.m04 GIS Con 2% 57.6 138.1 80.5 9.85 0.85 4.40 4.05 0.70 0.01 Pass 

ppt.m05 GIS Con 1% 60.0 180.3 120.4 27.48 2.56 7.64 5.86 0.78 0.02 Pass 

ppt.m06 GIS Con 1% 69.0 197.1 128.2 22.91 2.94 7.20 6.77 3.52 0.03 Pass 

ppt.m07 GIS Con 1% 45.7 206.2 160.5 0.75 1.13 0.61 1.21 2.34 0.01 Pass 

ppt.m08 GIS Con 1% 51.7 232.4 180.7 1.58 0.31 1.88 0.24 2.55 0.01 Pass 

ppt.m09 GIS Con 1% 68.9 178.0 109.1 3.87 2.47 0.32 2.04 0.09 0.01 Pass 

ppt.m10 GIS Con 1% 56.9 150.4 93.4 3.14 1.67 1.16 2.07 0.49 0.01 Pass 

ppt.m11 GIS Con 1% 46.4 162.3 116.0 1.28 0.05 1.47 1.75 0.11 0.01 Fail 

ppt.m12 GIS Con 1% 47.2 166.2 119.0 2.96 2.15 2.08 1.67 1.31 0.01 Pass 

temp.m01 GIS Con 2% -9.6 15.8 25.4 4.67 3.08 2.36 1.95 3.30 0.01 Pass 

temp.m02 GIS Con 1% -7.9 17.3 25.3 5.50 3.27 2.66 2.19 3.26 0.01 Pass 

temp.m03 GIS Con 2% -3.3 19.4 22.7 7.63 3.79 3.22 2.55 3.29 0.01 Pass 

temp.m04 GIS Con 2% 3.9 21.8 17.9 8.08 3.91 3.34 2.64 3.27 0.01 Pass 

temp.m05 GIS Con 2% 10.5 25.4 14.9 6.67 3.38 3.09 2.61 3.20 0.01 Pass 

temp.m06 GIS Con 2% 15.5 27.9 12.4 5.74 3.18 2.84 2.32 2.84 0.01 Pass 

temp.m07 GIS Con 3% 17.6 28.9 11.3 4.92 2.58 2.82 2.30 2.25 0.01 Pass 

temp.m08 GIS Con 2% 16.8 29.3 12.5 6.24 2.75 3.25 2.72 2.37 0.01 Pass 

temp.m09 GIS Con 2% 12.8 27.4 14.6 5.16 2.85 2.78 2.40 2.93 0.01 Pass 
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Candidate metrics Group Type PctDom Min Max Range PvIvE EvALI PvNP PvIwet EvIdry rf_MDA Screened 

temp.m10 GIS Con 2% 6.5 24.4 17.9 5.16 2.80 2.82 2.52 3.06 0.01 Pass 

temp.m11 GIS Con 2% 0.6 20.5 19.9 4.26 2.74 2.41 2.17 3.20 0.01 Pass 

temp.m12 GIS Con 2% -6.1 17.0 23.2 2.69 2.37 1.71 1.61 3.13 0.01 Pass 

tmax GIS Con 2% 10.6 28.3 17.6 5.89 3.08 2.93 2.43 2.96 0.01 Pass 

tmean GIS Con 2% 4.8 22.7 17.9 5.51 3.12 2.77 2.32 3.10 0.01 Pass 

tmin GIS Con 2% -1.0 17.5 18.5 4.96 3.11 2.54 2.17 3.22 0.01 Pass 

ActiveFloodplain_score Geomorph Ord 29% 0 3 3 31.06 8.15 5.07 0.64 3.20 0.00 Pass 

AlluvialDep_score Geomorph Ord 46% 0 3 3 32.76 9.16 6.10 1.04 2.10 0.00 Pass 

BankWidthMean Geomorph Con 3% 0.2 52.3 52.1 46.75 11.19 7.33 4.61 2.80 0.01 Pass 

ChannelDimensions_score Geomorph Ord 55% 0 3 3 6.55 0.35 3.06 3.98 0.45 0.00 Pass 

Continuity_score Geomorph Ord 54% 0 3 3 64.56 8.39 9.05 2.42 3.45 0.00 Pass 

Depositional_score Geomorph Ord 30% 0 3 3 64.74 10.66 9.52 3.24 2.98 0.00 Pass 

fp_entrenchmentratio_mean Geomorph Con 36% 1.0 2.5 1.5 8.32 0.98 3.91 4.16 0.39 0.00 Pass 

GradeControl_score Geomorph Ord 28% 0 1.5 1.5 3.14 0.44 2.11 1.48 0.31 0.00 Pass 

Headcut_score Geomorph Ord 72% 0 3 3 23.95 6.09 4.41 0.58 1.69 0.00 Pass 

NaturalValley_score Geomorph Ord 39% 0 1.5 1.5 12.61 3.98 1.55 2.34 2.88 0.00 Pass 

RifflePoolSeq_score Geomorph Ord 35% 0 3 3 26.28 4.97 6.77 1.17 0.57 0.00 Pass 

Sinuosity_score Geomorph Ord 55% 0 3 3 18.86 6.20 3.37 0.15 3.41 0.00 Pass 

Slope Geomorph Con 24% 0 46 46 33.30 6.58 6.45 1.73 2.23 0.01 Pass 

SubstrateSorting_score Geomorph Ord 42% 0 3 3 52.45 7.07 9.31 3.53 2.92 0.01 Pass 

HydricSoils_score H20 (Indirect) Bin 74% 0 3 3 26.06 6.35 2.45 1.60 5.13 0.00 Pass 

LeafLitter_score H20 (Indirect) Ord 29% 0 1.5 1.5 84.33 12.47 9.85 2.84 4.08 0.00 Pass 

ODL_score H20 (Indirect) Con 38% 0 1.5 1.5 27.02 7.01 5.34 1.16 3.69 0.00 Pass 

SedimentOnPlantsDebris_score H20 (Indirect) Ord 33% 0 1.5 1.5 23.89 8.32 3.59 0.65 4.34 0.00 Pass 

WoodyJams_number H20 (Indirect) Ord 82% 0 11 11 0.59 0.95 0.68 0.04 0.21 0.00 Fail 

DRNAREA_mi2 GIS Con 5% 0.0 289.0 289.0 17.01 6.88 4.30 3.16 2.20 0.03 Pass 

Elev_m GIS Con 3% 10 887 877 7.20 2.57 3.60 2.14 0.07 0.01 Pass 

REGION GIS Cat NA NA NA NA NA NA NA NA NA NA NA 

StreamOrder GIS Ord 56% 1 3 2 81.55 17.65 9.41 3.84 5.95 0.01 Pass 

alglive_cover_score Bio Ord 63% 0 4 4 40.57 11.91 6.58 1.64 3.76 0.00 Pass 

alglivedead_cover_score Bio Ord 63% 0 4 4 40.00 12.08 6.41 1.39 3.81 0.00 Pass 

Amphib_abundance Bio Con 74% 0 42 42 12.17 7.40 3.66 1.96 2.99 0.00 Pass 

Amphib_richness Bio Con 97% 1 3 2 4.87 4.79 2.42 1.45 2.49 0.00 Fail 
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Candidate metrics Group Type PctDom Min Max Range PvIvE EvALI PvNP PvIwet EvIdry rf_MDA Screened 

Crayfish_abundance Bio Con 79% 0 10 10 7.49 4.52 2.77 0.90 2.44 0.00 Pass 

fishabund_score2 Bio Ord 78% 0 1.5 1.5 41.93 14.60 6.87 2.23 3.14 0.00 Pass 

ironox_bfscore Bio Ord 85% 0 3 3 25.14 8.92 5.63 3.95 3.87 0.00 Pass 

EPT_abundance Bio Con 48% 0 72 72 88.57 13.61 10.57 6.29 1.78 0.01 Pass 

EPT_taxa Bio Con 48% 0 12 12 122.06 16.26 12.66 6.99 2.77 0.01 Pass 

GOLD_abundance Bio Ord 46% 0 36 36 37.69 12.02 6.51 2.15 3.59 0.00 Pass 

Mollusk_abundance Bio Con 89% 0 16 16 10.76 6.12 3.67 1.87 1.64 0.00 Pass 

Mollusk_taxa Bio Con 89% 0 5 5 9.25 5.50 3.57 1.32 1.54 0.00 Pass 

Noninsect_abundance Bio Con 45% 0 46 46 19.07 7.70 2.02 1.98 5.13 0.00 Pass 

Noninsect_taxa Bio Con 45% 0 8 8 30.72 9.83 4.18 0.71 5.25 0.00 Pass 

OCH_abundance Bio Con 60% 0 25 25 20.77 8.51 4.82 2.56 2.60 0.00 Pass 

perennial_NC_abundance Bio Con 46% 0 64 64 106.33 14.58 11.33 7.64 1.98 0.02 Pass 

perennial_NC_live_abundance Bio Con 47% 0 58 58 106.94 14.42 11.38 7.77 1.94 0.02 Pass 

perennial_NC_taxa Bio Con 46% 0 13 13 169.20 18.63 14.69 9.26 2.95 0.03 Pass 

perennial_PNW_abundance Bio Con 62% 0 34 34 72.93 11.76 9.13 7.15 2.90 0.01 Pass 

perennial_PNW_live_abundance Bio Con 62% 0 33 33 76.51 11.66 9.34 7.53 2.90 0.01 Pass 

perennial_PNW_taxa Bio Con 62% 0 8 8 115.77 14.90 11.82 8.47 2.85 0.01 Pass 

Richness Bio Con 25% 0 20 20 181.13 20.01 14.95 7.04 5.86 0.01 Pass 

TolRelAbund Bio Con 39% 0 1 1 24.87 6.44 0.96 4.85 4.98 0.01 Pass 

TotalAbundance Bio Con 25% 0 105 105 101.84 15.74 10.73 4.54 5.14 0.01 Pass 

DifferencesInVegetation_score Bio Ord 39% 0 3 3 49.65 11.27 6.95 0.71 2.96 0.00 Pass 

FibrousRootedPlants_score Bio Ord 55% 0 3 3 30.83 4.60 8.07 3.31 0.99 0.00 Pass 

hydrophytes_inchannel Bio Con 70% 0 12 12 11.42 7.47 2.40 0.28 2.12 0.00 Pass 

hydrophytes_present Bio Con 35% 0 16 16 55.31 12.91 7.72 3.32 3.65 0.00 Pass 

hydrophytes_present_noflag Bio Con 37% 0 16 16 51.20 12.22 7.48 3.32 3.20 0.00 Pass 

liverwort_cover_score Bio Ord 91% 0 3 3 13.16 5.69 4.22 3.24 2.01 0.00 Pass 

moss_cover_score Bio Ord 94% 0 3 3 5.32 4.83 2.24 0.54 0.77 0.00 Pass 

OBL_inchannel Bio Con 83% 0 8 8 14.67 8.88 3.59 0.81 2.52 0.00 Pass 

OBL_present Bio Con 74% 0 10 10 21.62 10.42 4.24 1.15 3.28 0.00 Pass 

OBL_present_noflag Bio Con 76% 0 10 10 18.65 9.45 4.04 1.23 2.66 0.00 Pass 

PctShading Bio Con 41% 0 1 1 6.25 5.01 1.42 0.83 1.24 0.00 Pass 

UplandRootedPlants_score Bio Ord 58% 0 3 3 124.21 10.01 15.81 5.96 2.70 0.02 Pass 
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2.4.2 Metric Screening 
Metric screening was performed across the entire NE and SE datasets. As an initial data exploration step, 
the relationships between actual streamflow duration class (hereafter “flow class”) and indicators by 
ordinating all 90 candidate metrics for all samples in the dataset in a nonmetric multidimensional scaling 
using Gowers’ distance (Gower 1971) were visualized. Convex hulls were drawn around each flow class 
to help visualize their distributions in ordination space. The ordination of all candidate metrics for NE 
and SE samples showed extensive overlap of intermittent, ephemeral, and perennial reaches, indicating 
the challenge of separating samples by flow class (Figure 5). This was the case for both the Northeastern 
and Southeastern regions, as well as the U.S. Caribbean (Figure 6 and Figure 7). 

 

Figure 5. Beta SDAM candidate metric ordination. Ordination plot shows candidate metrics from all regions 
(from Northeast, Southeast, and U.S. Caribbean). Overlapping red, green, and blue hulls indicate the challenge 

of separating by flow class. 
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Figure 6. Same as Figure 5; points are colored by Region (Northeast = orange, Southeast = purple, Caribbean = 

yellow).  
 

Figure 6 and Figure 7 show the same ordination plot as in Figure 5 but with points colored by 
region. Clustering of points may indicate the presence of regional similarities, likely driven in 
large part by geospatial metrics. The subsequent steps in SDAM calibration excluded the U.S. 
Caribbean samples because of 1) the degree of separation between the U.S. Caribbean samples 
and most of the SE samples in the ordination (Figure 6) and 2) the limited number of samples 
available to develop a U.S. Caribbean-specific SDAM at this time. Spread of points across 
overlapping Ephemeral (red), Intermittent (green), and Perennial (blue) hulls indicate the 
challenge of distinguishing flow class within either region. 
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Figure 7. Same ordination plot as Figure 6 but with Caribbean data removed; points are colored by Region 

(Northeast = orange; Southeast = purple). 
 
After the initial data exploration, candidate metrics were evaluated using criteria for inclusion 
in the beta SDAMs for the NE and SE (Table 4) characterizing distribution of data and 
responsiveness:  

• Distribution statistic criterion: calculated as percent dominance of the most common 
value (which was typically zero); all metrics had to meet this criterion. 

• Criteria measuring the responsiveness of metrics (i.e., ability to discriminate across flow 
classes) included: 

o A set of statistical comparisons of mean values at different subsets of reaches 
(e.g., t-statistic from a comparison of metric values at perennial and non-
perennial reaches), as has been used in other studies (Hawkins et al. 2010, Cao 
and Hawkins 2011, Mazor et al. 2016). 

o A responsiveness statistic based on metric importance (specifically, mean 
decrease in accuracy) from a random forest model to predict flow class from all 
candidate metrics; the model was calibrated using the default option from the 
randomForest function in the randomForest package in R (Liaw and Wiener 
2002). 
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Candidate metrics had to meet at least one responsiveness criterion, in addition to the 
distribution criterion, to be considered in further analyses. A total of 89 of 90 candidate metrics 
were considered as screened metrics (REGION was not included in screening). Five metrics 
failed: Amphib_richness, ppt.m01, ppt.m02, ppt.m011, and WoodyJams_number. These 
metrics failed because they had a Percent Dominance (PctDom) score greater than 95% and/or 
because they did not meet at least one of the responsiveness criteria. Note that this evaluation 
was carried out using the training dataset described in the next section and that U.S. Caribbean 
data were not included.  

Table 4. Metric screening criteria. Metrics had to meet the distribution criterion and at least one responsiveness 
criterion to be considered screened for further analysis. 

Criterion Definition 
Distribution criterion 
% dominance of most 
common value 

<95% Frequency of most common value (typically, zero) in the 
development data set 

Responsiveness criteria 
PvIvE F>2 F-statistic in a comparison of values at perennial versus 

intermittent versus ephemeral reaches 
EvALI t>2 t-statistic in a comparison of values at ephemeral versus at least 

intermittent reaches 
PvNP t>2 t-statistic in a comparison of values at perennial versus non-

perennial reaches 
PvIwet t>2 t-statistic in a comparison of values at perennial versus flowing 

intermittent reaches 
EvIdry t>2 t-statistic in a comparison of values at ephemeral versus dry 

intermittent reaches 
rf_MDA Top 

quartile 
Mean decrease accuracy (MDA) in a random forest model to 
predict perennial, intermittent, or ephemeral streamflow 
duration class 

 

2.4.3 Data Preparation  
Prior to method development, a portion of the data was withheld for use in final model testing. 
Samples from 20% of the study reaches, balanced by Class and Region, were withheld into a 
“test” dataset. These samples were used to inform the final model(s) selection and refinement, 
by evaluating the model(s) on novel reaches. Samples from the remaining 80% of the reaches 
were used to develop (or “train”) the model and are referred to hereafter as the training 
dataset. 

U.S. Caribbean data were not included in the beta model development because there were not 
enough samples to adequately inform the modeling process. However, a separate section of 
this data supplement (2.4.8) is dedicated to evaluating how well the final beta model performs 
in Puerto Rico and the U.S. Virgin Islands using the U.S. Caribbean data as a testing set. As 
explained in more detail below, the classification accuracy of separate models for NE and SE 
versus that of a global (or unstratified) model for NE and SE was assessed during the model-
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building process to determine whether separate models for the NE and SE would provide more 
accurate classifications than a single, unstratified model that would be used across both 
regions. 

2.4.3.1 Repeat reach visits 
Of the 336 reaches included in the NE and SE datasets, each was visited between one and four 
times, yielding a total of 916 samples. Figure 8 shows the distribution of repeat reach visits. 

 
 

 
 

Figure 8. Distribution of number of visits across the (A) Northeast (190 reaches) and (B) Southeast (146 reaches).  
 

To minimize bias, oversampling was performed on the training dataset (Figure 9). Oversampling 
is a common preprocessing step that serves to give under-represented classes more visibility in 
the data (Mohammed et al. 2020).  

Co
un

t 

Number of visits Number of visits 

A B 
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Figure 9. Oversampling process used for training dataset. x is a hypothetical candidate indicator. 

 

Oversampling was performed on the training dataset only (no manipulations were conducted 
on the test dataset) and included the following steps: 

• If a reach was sampled one time, each sample was repeated four times. 
• If a reach was sampled twice, each sample was repeated two times. 
• If a reach was sampled three or four times, the samples were left as-is. 

The result of the oversampling process was that each study reach had three or four samples 
used in the analysis process for method development and the distribution of flow duration 
classes was preserved from the original training dataset to the oversampled training dataset, 
which also matched well to the distribution of flow duration classes within the testing dataset 
(Figure 10). Therefore, the augmented (oversampled) training data with 1060 samples were 
used in the next step of the method development analysis process to select screened metrics.  
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Figure 10. Distribution of ephemeral (E), intermittent (I), and perennial (P) classes in the (A) training dataset 
before oversampling, (B) training dataset after oversampling, and the (C) testing dataset (not oversampled). 
Shown for each bar is the number of samples for a streamflow duration class colored by region. A balanced 

distribution between classes is important to mitigate bias and improve model accuracy. Note that no 
oversampling is performed on the testing data. 

 

2.4.4 Metric selection 
The 94 screened metrics were reduced to a final set of 89 metrics for the NE and SE beta 
SDAMs based on their importance in random forest models using the Recursive Feature 
Elimination (RFE) function in the R caret package (Kuhn 2020). Briefly, RFE is a form of stepwise 
selection where complex models (i.e., those based on many metrics) are calibrated and simpler 
models are considered incrementally by eliminating the least important metrics. Here, the most 
complex model was first considered. Then, the five least important metrics were eliminated 
based on their relative performance in the random forest model. This process was iterated until 
a 20-metric model was identified, after which only one metric was eliminated in each 
successive step. The best-performing model (i.e., highest accuracy in predicting true streamflow 
duration class) was identified. Then, the simplest model (i.e., the one with the fewest metrics) 
with accuracy within 1% of the model with the best accuracy was selected to identify the final 
set of metrics. If the simplest model selected by this approach had more than 20 metrics, the 
20-metric model was selected. For this analysis, accuracy on the training dataset was measured 
with Cohen’s Kappa statistic—a measure of accuracy that accounts for uneven distribution 
among the three streamflow duration classes. Note that the Kappa statistic varies from 0 to 1, 
where 0 equals agreement equivalent to chance and 1 equates to perfect agreement between 
the predicted and true classification. Due to the use of random forest models, the Out-of-Bag 
(OOB) error rate is provided. This means that the prediction error measure for the model is 
computed through bootstrap or bagging, where subsampling with replacement creates a set of 
training samples for the model to learn from and the OOB error is the mean prediction error on 
each training sample for all flow classes (James et al. 2013). 

Co
un

t 

A B C 

Flow class Flow class Flow class 
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At the beginning of the analysis, it was unclear whether greater accuracy would be achieved 
having one model for the combined NE and SE (Unstratified model) or two models separated by 
region (Stratified models). Thus, the preliminary modeling process was applied to all three 
types of models. 

In addition, it was unclear how many geospatial (GIS) metrics should be included in the model-
building process. There are advantages and disadvantages to including geospatial metrics in an 
SDAM. GIS metrics may improve SDAM performance but require GIS analysis in the application 
of the resulting method. Furthermore, GIS metrics tend to dominate during the RFE selection, 
resulting in models that are almost entirely comprised of geospatial metrics. See Mazor et al. 
(2021b) for a discussion of the implications of including geospatial metrics in SDAMs. Initial 
investigation of stratified and unstratified models allowing all GIS metrics showed that the 
average monthly precipitation metric for June (e.g., ppt.m06) was consistently among the most 
important metrics in addition to drainage area (Figure 11). However, allowing RFE to select any 
number of GIS metrics led to entirely GIS or GIS-dominated models. An attempt was made to 
limit the number of GIS indicators selected by aggregating the average monthly precipitation 
and temperature metrics into averages over three consecutive months (seasons) centered 
around the most consistently important month across all models, June ppt.m06, and adding the 
adjacent months to create new aggregate GIS metrics for precipitation and temperature (Table 
5). The other GIS metrics (Elev_m, StreamOrder, DRNAREA_mi2, REGION, and the three 
MeanSnowPersistance metrics) were not changed. In addition, the annual summary climate 
metrics tmax, tmin, tmean, and ppt which were never or rarely selected in any of the models 
and so were dropped. This screening reduced the number of GIS metrics available for selection 
by RFE from 35 to 15 metrics. Ultimately, three new experiments were performed using all the 
screened candidate field metrics and the shorter list of new aggregated GIS metrics: allow RFE 
to select any number of GIS metrics (all GIS); prevent the model from selecting any GIS metrics 
(no GIS); and allow the model to include exactly two GIS metrics (2 GIS). The 2 GIS experiment 
was seen as a compromise between two extremes, where the highest-performing geospatial 
metrics could be included without letting the models become GIS-dominated.  
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Figure 11. Metrics selected by Recursive Feature Elimination for the (A) unstratified (B) Northeast only, and (C) Southeast only models when allowing all 
candidate GIS metrics. 

 

 

 

A B C 
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Table 5. Aggregation of GIS metrics 
Original GIS metrics New (aggregate) GIS metrics 

ppt.m02 ppt.234 
ppt.m03 
ppt.m04 
ppt.m05 ppt.567 
ppt.m06 
ppt.m07 
ppt.m08 ppt.8910 
ppt.m09 
ppt.m10 
ppt.m11 ppt.11121 
ppt.m12 
ppt.m01 
ppt  Dropped from consideration (rely on 

seasonal precipitation instead) 
temp.m02 temp.234 
temp.m03 
temp.m04 
temp.m05 temp.567 
temp.m06 
temp.m07 
temp.m08 temp.8910 
temp.m09 
temp.m10 
temp.m11 temp.11121 
temp.m12 
temp.m01 
tmax Dropped from consideration (rely on 

seasonal temperature instead) tmean 
tmin 

 

Even with fewer GIS metrics available for selection following aggregation, the RFE algorithm still 
created models that were largely GIS-dominated (Figure 12). Thus, the two most important GIS 
metrics for each model were chosen to proceed in the analysis with the remaining GIS metrics 
eliminated from consideration. Here, “importance” was determined mainly using Mean 
Decrease in Accuracy, which is the relative loss in predictive performance when the particular 
metric is omitted from the model. However, the Mean Decrease in Gini Index, or how 
important the metric is in splitting between different streamflow duration classes, was also 
applied to confirm the selection of the two most important GIS metrics. Gini importance 
measures how well a potential decision tree split separates between the flow classes. Ranking 
the Gini index provides insight on which metrics may be most relevant to the models by 
indicating the “quality” of the split, or how much information was gained by using the metric to 
discriminate between flow classes. 
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NE SE 

       
NE % Correct PvIvE (test): 58.9% 
NE % Correct EvALI (test): 85.6% 
SE % Correct PvIvE (test): 32.9% 
SE % Correct EvALI (test): 65.7% 

% Correct PvIvE (test): 67.8% 
% Correct EvALI (test): 83.3% 

 

% Correct PvIvE (test): 55.7% 
% Correct EvALI (test): 74.3% 

 

 

Figure 12. Metrics selected by Recursive Feature Elimination for the (A) unstratified, (B) Northeast only, and (C) Southeast only models when using aggregated GIS metrics. 
Models were still GIS-dominated; therefore, analysis proceeded using only the top two performing GIS metrics in each model (highlighted in yellow). 

 

A B C 
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The modeling process (including RFE) produced nine models using the training dataset: 

1.      Unstratified Model (all GIS): a single model for the entire NE and SE with no limit 
on the number of GIS metrics that may be selected by RFE 

2.      Unstratified Model (no GIS): a single model for the entire NE and SE region that 
excludes GIS metrics (e.g., temp, precip) from consideration 

3.  Unstratified Model (2 GIS): a single model for the entire NE and SE, where only the 
two highest-performing geospatial metrics may be selected 

4-5.   Stratified Models (all GIS): separate models for the NE and SE regions, with no limit 
on the number of GIS metrics that may be selected by RFE 

6-7.   Stratified Models (no GIS): separate models for the NE and SE regions that exclude 
GIS metrics (e.g., temp, precip) from consideration 

8-9.   Stratified Models (2 GIS): separate models for the NE and SE regions, where only 
the two highest-performing GIS metrics within a region may be selected 

 
The nine models were compared to determine the degree of improved performance by regional 
stratification versus a combined model and by the number of GIS metrics (all, two most 
important, none) that were included. Model design characteristics and optimal number of 
metrics selected by RFE are shown in Table 6, and the selected metrics for each model are 
shown in Figure 13. 

Biological metrics, particularly those based on aquatic invertebrates, were among the most 
frequently selected metrics across model sets (Figure 13). Among non-biological metrics, mean 
bankfull width was the only frequently selected geomorphological metric.   
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Table 6. Design characteristics of the nine models. Unstratified models include Northeast (NE) and Southeast (SE) training data. Models stratified by region 
are models using only NE or SE training data. All GIS: no limitation on number of selected geospatial metrics. No GIS: excluded all geospatial metrics. 2 GIS: 
maximum of two selected geospatial metrics. # samples: number of samples used in model training and testing. # metrics: number of metrics eligible and 

selected in best models. RFE OOB error rate: Out-Of-Bag (OOB) error rate of the best model produced by recursive feature elimination (RFE). 

Model set 

# samples 
(training - 
original) 

# samples 
(training - 

augmented) 
# samples 
(testing) 

# metrics 
eligible 

# metrics 
selected 

# GIS 
metrics 
selected 

Kappa 
(training) 

RFE OOB 
error rate 

Unstratified models 
NESE (all GIS) 756 1060 160 69 10 9 0.99 0.19 
NESE (no GIS) 756 1060 160 54 14 N/A 0.71 19.06 
NESE (2 GIS) 756 1060 160 56 10 2 0.79 13.77 
Models stratified by region 
NE (all GIS) 432 611 90 69 10 9 0.99 0.16 
NE (no GIS) 432 611 90 54 13 N/A 0.70 19.64 
NE (2 GIS) 432 611 90 56 10 2 0.82 9.17 
SE (all GIS) 324 449 70 69 15 10 0.92 3.79 
SE (no GIS) 324 449 70 54 12 N/A 0.75 16.93 
SE (2 GIS) 324 449 70 56 10 2 0.82 12.25 



29 
 

 
Figure 13. Screened metrics (left) selected by Recursive Feature Elimination for each model (bottom, see Table 6). 

White tiles indicate that a screened metric was ineligible for selection in that model set (e.g., Elev_m was 
ineligible for models that did not allow GIS metrics). Y-axis labels refer to screened metrics described in Table 3 

and Appendix A.  
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2.4.4.1 Preliminary model calibration and performance assessment 
Random forest models were fit for each of the nine models using the randomForest function in 
the randomForest package in R (Liaw and Wiener 2002) using default parameters, except that 
the number of trees was set to 1500 instead of the default 500.  

Model performance evaluation focused on two aspects: accuracy and repeatability (Table 7 and 
Figure 14). Accuracy was assessed by calculating the same comparisons used to evaluate metric 
responsiveness during the metric screening phase (e.g., ephemeral versus at least intermittent 
reaches [EvALI], perennial versus wet intermittent reaches [PvIwet], etc.; Appendix A). Accuracy 
of a model’s ability to correctly distinguish among flow classes was assessed on both the 
training and testing datasets independently. Training and testing measures of accuracy were 
compared to see if models validated poorly (training dataset accuracy substantially higher than 
testing dataset accuracy). Poorly validated models may be overfitting for the training reaches 
and thus may not be generally predictive of streamflow duration classification. The 
performance of unstratified models was evaluated by examining results for reaches within each 
region separately. 

Repeatability, or precision, was assessed using data from the 215 reaches that were resampled 
(Figure 8) and calculated as the percent of reaches where model classifications from repeated 
samples at the same reach were consistent (regardless of classification accuracy). Due to the 
limited amount of data, precision was only assessed for the entire NE and SE and not within 
each stratum (Table 7). 
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Table 7. Performance evaluation of the nine Random Forest model sets developed for the NE and SE (see Table 6 
for descriptions). PvIvE: Percent of reach samples classified correctly as perennial, intermittent, or ephemeral. 

EvALI: Percent of reach samples classified correctly as ephemeral or at least intermittent. PvNP: Percent of reach 
samples classified correctly as perennial or non-perennial. PvIwet: Percent of flowing reach samples classified 

correctly as perennial or intermittent. IvEdry: Percent of dry reach samples correctly classified as intermittent or 
ephemeral. Precision: percent of reaches classified consistently across visits. Train: Result for training data. Test: 

Result for testing data.   

Model set Scope 

Accuracy 

Precision 

PvIvE EvALI PvNP PvIwet IvEdry 

Train Test Train Test Train Test Train Test Train Test 

Unstrat (all GIS) East 100% 57% 100% 81% 100% 73% 100% 57% 100% 55% 97% 

Unstrat (no GIS) East 81% 64% 92% 89% 88% 84% 81% 60% 81% 71% 81% 

Unstrat (2 GIS) East 86% 66% 94% 91% 91% 75% 86% 61% 86% 74% 82% 

Unstrat (all GIS) NE 100% 59% 100% 84% 100% 74% 100% 63% 100% 52% 99% 

Unstrat (no GIS) NE 79% 52% 90% 88% 88% 62% 80% 47% 77% 61% 82% 

Unstrat (2 GIS) NE 86% 56% 93% 89% 92% 66% 87% 53% 84% 61% 80% 

Unstrat (all GIS) SE 100% 54% 100% 77% 100% 71% 100% 50% 100% 60% 94% 

Unstrat (no GIS) SE 84% 79% 95% 90% 89% 89% 83% 75% 86% 83% 80% 

Unstrat (2 GIS) SE 87% 80% 96% 93% 91% 87% 86% 73% 89% 90% 84% 

Regional (all GIS) NE 100% 62% 100% 86% 100% 77% 100% 64% 100% 58% 97% 

Regional (no GIS) NE 80% 59% 91% 91% 88% 68% 81% 54% 79% 68% 88% 

Regional (2 GIS) NE 91% 63% 96% 91% 95% 72% 92% 59% 89% 71% 86% 

Regional (all GIS) SE 96% 51% 98% 71% 97% 77% 97% 60% 94% 40% 86% 

Regional (no GIS) SE 83% 81% 95% 93% 88% 89% 82% 80% 84% 83% 87% 

Regional (2 GIS) SE 88% 69% 96% 89% 91% 79% 87% 63% 89% 77% 90% 

Regional (all GIS) East 98% 58% 99% 79% 99% 77% 98% 62% 98% 50% 95% 

Regional (no GIS) East 69% 82% 92% 93% 77% 88% 66% 82% 75% 81% 88% 

Regional (2 GIS) East 89% 66% 96% 90% 93% 75% 90% 61% 89% 73% 87% 
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Figure 14. Performance of the nine Random Forest model sets developed for Northeast and Southeast regions 
(see Table 6 for descriptions). PvIvE: Proportion of reach samples classified correctly as perennial, intermittent, 

or ephemeral. EvALI: Proportion of reach samples classified correctly as ephemeral or at least intermittent. 
PvNP: Proportion of reach samples classified correctly as perennial or non-perennial. PvIwet: Proportion of 

flowing reach samples classified correctly as perennial or intermittent. IvEdry: Proportion of dry reach samples 
correctly classified as intermittent or ephemeral. Precision: proportion of reaches classified consistently across 

visits. 
 

2.4.4.2 Comparison of Model Options 
Performance of the nine preliminary models (described in Section 2.4.4) were evaluated and 
compared in detail using confusion matrices (Figures 15, 16, and 17). Rather than simply tallying 
correct versus incorrect predictions, confusion matrices provide further information by 
summarizing how the correct and incorrect predictions are spread across the three streamflow 
duration classes. In each confusion matrix, the X-axis lists the actual streamflow class and the Y-
axis lists the predicted class. Thus, the main diagonal (blue) highlights correct predictions, while 
the other cells indicate incorrect predictions.  

Confusion matrices using the training dataset are expected to be the most accurate because 
the models were developed using those data. Confusion matrices using the testing datasets are 
expected to be less accurate, because these represent novel reaches that were not used to 
build the model. Final model selection is informed by performance on the test dataset, which is 
more indicative of a model’s ability to perform on novel data. 
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Unstratified (all GIS) 
No limit on the number of GIS metric that may 

be selected 

Unstratified (no GIS) 
No GIS metrics may be selected 

Unstratified (2 GIS) 
The two most important GIS metrics are 
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% Correct PvIvE (test): 46.2% 
% Correct EvALI (test): 76.3% 

% Correct PvIvE (test): 63.8% 
% Correct EvALI (test): 88.8% 

% Correct PvIvE (test): 66.3% 
% Correct EvALI (test): 90.6% 

Figure 15. Detailed performance of the three Unstratified Models (all GIS), (no GIS), and (2 GIS) (see Table 6 for 
descriptions). The top row provides confusion matrices for the training data and the second row shows confusion 

matrices on the testing data. Shading of boxes in matrices describe the proportion of samples in each dataset. 
The third row lists the metrics chosen via Recursive Feature Elimination for each model (with metrics at the top 
being ranked as more important in terms of contribution to model accuracy). The bottom row lists the accuracy 

metrics PvIvE and EvALI on the test data. 
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NE (all GIS) 
No limit on the number of GIS metric that may 

be selected 

NE (no GIS) 
No GIS metrics may be selected 

NE (2 GIS) 
The two most important GIS metrics are 

included 
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 % Correct PvIvE (test): 67.8% 
% Correct EvALI (test): 83.3% 

% Correct PvIvE (test): 58.9% 
% Correct EvALI (test): 91.1% 

% Correct PvIvE (test): 63.3% 
% Correct EvALI (test): 91.1% 

Figure 16. Detailed performance of the three Northeast Models (all GIS), (no GIS), and (2 GIS) (see Table 6 for 
descriptions). The top row provides confusion matrices for the training data and the second row shows confusion 

matrices for the testing data. Shading of boxes in matrices describe the proportion of samples in each dataset. 
The third row lists the metrics selected by Recursive Feature Elimination for each model (with metrics at the top 

having greater importance in terms of contribution to model accuracy). The bottom row lists the accuracy 
metrics PvIvE and EvALI on the test data.  
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SE (all GIS) 
No limit on the number of GIS metric that may 

be selected 

SE (no GIS) 
No GIS metrics may be selected 

SE (2 GIS) 
The two most important GIS metrics are 

included 
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 % Correct PvIvE (test): 55.7% 
% Correct EvALI (test): 74.3% 

% Correct PvIvE (test): 81.4% 
% Correct EvALI (test): 92.9% 

% Correct PvIvE (test): 68.6% 
% Correct EvALI (test): 88.6% 

Figure 17. Detailed performance of the three Southeast Models (all GIS), (no GIS), and (2 GIS) (see Table 6 for 
descriptions). The top row provides confusion matrices for the training data and the second row shows confusion 

matrices on the testing data. Shading of boxes in matrices describe the proportion of samples in each dataset. 
The third row lists the metrics chosen via Recursive Feature Elimination for each model (with metrics at the top 
being ranked as more important in terms of contribution to model accuracy). The bottom row lists the accuracy 

metrics PvIvE and EvALI on the test data.  
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2.4.4.3 Selection of the final model 
As expected, for all nine model versions performance was highest on the training datasets used 
to develop the models. Selecting a model whose performance did not vary greatly between the 
training and testing data was optimal. For example, the Unstratified (all GIS) model was 99.8% 
accurate in predicting all three flow classes on the training data but only 56.9% accurate on the 
testing data, indicating that the model was likely overfitting to the training data and unable to 
perform well on novel reaches (Table 7 and Figure 14). 

When the models were permitted to select any number of geospatial metrics (all GIS), the RFE 
selection process was generally dominated by GIS metrics that were most likely to overfit to the 
training data. Given this result, and in consultation with the RSC, model selection was 
constrained to models that had only a limited number of GIS metrics. Based on performance of 
the stratified versus unstratified models, as well as practical considerations, regionally 
separated models (i.e., one NE and one SE model) using the 2 GIS version as the base model for 
each region were selected. These base models were refined further (as explained in the 
following sections) for improved performance and use as beta SDAMs. 

2.4.4.4 NE and SE base model descriptions 
The NE (2 GIS) and SE (2 GIS) base models each contained 10 metrics selected via RFE. The 
metrics are shown in Figure 18 by their order of importance. Here, importance to the random 
forest model is evaluated in two ways: (A) through mean decrease in accuracy and (B) through 
mean decrease in Gini Index, which is a measure of node impurity, or how important the metric 
is in discriminating between different flow duration classes. 
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NE Base Model (2 GIS) – Metrics Selected 

 
 

SE Base Model (2 GIS) – Metrics Selected 

 
 

Figure 18. Metrics included in the NE and SE base models, by decreasing order of importance. (A) Mean Decrease 
in Accuracy is the relative loss in predictive performance when the particular metric is omitted from the model. 

(B) Mean Decrease in Gini: Gini Index is a measure of node impurity, or how important the metric is in 
discriminating between different streamflow duration classes. 

 

A B 

A B 
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To evaluate the overall performance of each base model, confusion matrices were created for 
both training and testing datasets (Figure 19). The highest number of misclassifications in the 
testing datasets were perennial reaches misclassified as intermittent in the Northeast (n=17) 
and intermittent reaches misclassified as perennial in the Southeast (n=9). No perennial reach 
samples were misclassified as ephemeral in either testing datasets; only one ephemeral reach 
sample was misclassified as perennial in the SE testing dataset.  

NE Base Model – Confusion Matrices 
 

    
 

 

SE Base Model – Confusion Matrices 
 

     
 

Figure 19. Confusion matrices of the (A) training and (B) testing dataset on the unstratified (2 GIS) model. The 
training datasets contained a total of 611 (NE) and 449 (SE) samples and the testing datasets contained 90 (NE) 

and 70 (SE) samples. X-axis shows actual flow duration class and Y-axis shows predicted flow duration class. Blue 
diagonal indicates correct predictions. P = perennial, I = intermittent, and E = ephemeral. Shading of boxes in 

matrices describe the proportion of samples in each dataset. 

A B 

  Actual  Actual 

A B 

  Actual  Actual 
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2.4.5 Simplification of the base models  
Following selection of the base models for each region, the next step was to simplify each 
model. Simplification facilitates SDAM field implementation while maintaining or improving 
model performance. Simplification proceeded in three steps: 

1. Refinement of metrics 
2. Increased confidence required for classifications 
3. Addition of single indicators of at least intermittent flow 

2.4.5.1 Refinement of metrics 
The metric selection process described above identified an optimal set of metrics to use in each 
SDAM, but it did so without considering difficulties in measuring each metric or effort required 
to measure all selected metrics. For example, RFE may have selected a metric based on the 
total number of aquatic invertebrates, even if there was little or no value for model 
performance provided once more than 40 individuals were recorded. That is, SDAM users might 
be able to cease counting aquatic invertebrates once 40 individuals were recorded. Refinement 
of metrics aims to increase SDAM application efficiency and facilitate method use and 
transparency. Increasing SDAM application efficiency also helps ensure that an SDAM can be 
applied during a single site visit. 

Some metrics were eliminated because they were closely related to another metric in the 
selected model (i.e., they described similar stream characteristics, such as 
perennial_NC_abundance and perennial_NC_live_abundance). Metrics that were more time-
consuming to measure were replaced if a simpler alternative was available and continuous 
metrics were converted to binary or ordinal metrics based on visual interpretation of their 
distributions; a procedure known as binning. (Binary and ordinal metrics are typically more 
rapid to measure and easier to standardize than continuous metrics.) Accuracy and 
repeatability measures were re-evaluated to ensure that overall model performance was not 
substantially diminished by the refinements. 

The suite of metrics comprising a selected regional model was iteratively refined while 
monitoring model accuracy and repeatability. In each iteration, one or more metrics were 
either eliminated, binned, or otherwise simplified. The impact of each iterative refinement on 
performance was assessed, and the highest performing refined regional model was selected. 
Performance was assessed in terms of three accuracy measures: PvIvE (i.e., proportion of reach 
samples classified correctly as perennial, intermittent, or ephemeral), EvALI (i.e., proportion of 
reach samples classified correctly as ephemeral or at least intermittent), and IvEdry (i.e., 
proportion of reach samples classified correctly as intermittent or ephemeral when the reach 
did not have surface flow). 

More than 50 iterative refinements were performed on each of the base models. To illustrate 
the consequence of these refinements, a subset of key refinements is presented in Figures 20 
and 21. For example, a refinement made between Version 0 and Version 1 in the SE model 
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(Figure 20) was the replacement of perennial_NC_abundance, perennial_NC_live_abundance, 
TolRelAdbud, and Richness with BMI_score. Other metrics created during the iterative process 
of manual metric refinement (Figures 20 and 21) are described in Table 8.  

Additional combinations of refined and unrefined metrics were attempted during the iterative 
metric refinement process but are not shown in Figures 20 and 21 for brevity. 
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Table 8. Metrics Created During the Iterative Process of Manual Metric Refinement 

 

Metric Model Description Revision Version 
NE SE  NE SE 

DRNAREA_0.5bin X  The original continuous metric DRNAREA_mi2 was transformed by binning it 
into two discrete groups: less than 0.5 mi2, greater than or equal to 0.5 mi2 

1,3,4,5,6, 
7, 8,10 

 

DRNAREA_0.1bin  X Transformed DRNAREA_mi2 into two groups: less than 0.1 mi2, greater than or 
equal to 0.1 mi2 

 8,9 

BMI_score X X Original ordinal scoring of benthic macro-invertebrates based on the benthic 
macro-invertebrate metric used in the North Carolina Method (NCDWQ 2010), 
see Appendix for more detailed description 

2,3,8, 
9,10 

1, 2, 3, 4, 
5, 6, 7, 
10 

BMI_score_alt1 X  Same scoring as BMI_score with simplified tolerant taxa list 4  
BMI_score_alt2 X  Simplified scoring of BMI_score with original tolerant taxa list 5  
BMI_score_alt3 X X Simplified scoring with simplified tolerant taxa list 6 8 
BMI_score_alt4 X X Simplified scoring of BMI_score without considering relative abundance of 

tolerant taxa 
7 9 

PctShad_20_60 X  The original continuous metric Percent Shading was binned into three discrete 
groups: PctShading less than 0.2, PctShading between 0.2 and 0.6, and 
PctShaing greater than or equal to 0.6 

10  

Slope_10bin X  Slope less than 10, Slope greater than or equal to 10 9  
Slope_7bin X  The original Slope metric was separated into two groups: Slope less than 7, 

Slope greater than or equal to 7 
10  

TotalAbundance_0.
5bin 

 X The original TotalAbundance metric was separated into two groups: less than 
0.5, TotalAbundance greater than or equal to 0.5 

 3 

TA_0_10_32_plus  X TotalAbundance separated into four groups: TotalAbundance equals zero, 
TotalAbundance between 1 and 10, TotalAbundance between 11 and 32, 
TotalAbundance 33 or greater 

 8, 9 

TA_0_4_10_plus  X TotalAbundance separated into four groups: TotalAbundance equals zero, 
TotalAbundance between 1 and 4, TotalAbundance between 5 and 10, 
TotalAbundance 11 or greater 
10 

 10 

Richness_1bin  X Richness less than 1, Richness greater than or equal to 1  4 
BankWidth_1bin  X BankWidthMean less than 1, BankWidthMean greater than or equal to 1  6 
BankWidth_1.3bin  X BankWidthMean less than 1.3, BankWidthMean greater than or equal to 1.3  7 
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Figure 20. Ten model refinement versions of the NE base model (refinement version 0). Each refinement description is relative to the description for NE base model description. 
Black circles indicate the highest Accuracy (PvIvE), EvALI, and IvEdry scores. Dashed lines show performance of the NE base model. 
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Figure 21. Ten model refinement versions of the SE base model (refinement version 0). Each refinement description is relative to the SE base model description. Black circles 
indicate the highest Accuracy (PvIvE), EvALI, and IvEdry scores. Dashed lines show performance of the SE base model. 
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As shown by the performance lines in Figures 20 and 21, some refinements improved the 
performance of the NE and SE base models. This may be due to binning providing more 
informative model splits that are less prone to overfitting on the training dataset. Additionally, 
the refinements were able to replace or modify more time-consuming metrics with simpler 
alternatives without sacrificing performance.  

2.4.6 NE Final beta model selection 
Consultation with the RSC resulted in selection of the Version 7 refinement of the NE base 
model for the Northeast beta model. The Version 7 refinement differs from the NE base model 
as follows: 

• BMI_score_alt4 (abundance and diversity only): replaced perennial_NC_taxa, 
TolRelAbund, and Total Abundance. 

• Drainage Area (<0.5 or greater than 0.5 sq mile): originally a continuous metric ranging 
from 0.002‒396 mi2, drainage area was binned into discrete groups (less than 0.5 mi2 
and greater than or equal to 0.5 mi2). These discrete groups were based on visual 
interpretation of the metric distributions across ephemeral, intermittent, and perennial 
classes, and through trial-and-error testing. 

• BankWidthMean: no change 
• Natural Valley score: no change  
• Percent shading: no change 
• Average precipitation in August – October: no change 
• Slope: no change 
• Upland rooted plants score: no change 

Performance of the final NE refined model (Figure 22) is similar to that of the NE base model 
(Figure 19). 
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Figure 22. Performance of the final NE refined model based on the (A) training and (B) testing datasets. X-axis 
shows actual flow duration class and Y-axis shows predicted flow duration class. Blue diagonal indicates correct 

predictions. P = perennial, I = intermittent, and E = ephemeral. Shading of boxes in matrices describe the 
proportion of reach samples in each dataset. 

 

Using the NE refined model, one sample (of four visits to site VANE9099_B) in the training 
dataset continued to incorrectly predict ephemeral when the actual classification was 
perennial. In addition, two samples (visits to sites OKNE9440_B and TNNE9109_B) in the 
training dataset incorrectly predicted perennial when the actual classification was ephemeral. 
The sites with these ephemeral-perennial and perennial-ephemeral misclassifications are 
shown in Table 9. These three misclassified sites are evident in the top-right and bottom-left 
corners of the confusion matrix shown in panel A of Figure 22. No such misclassifications 
between perennial and ephemeral classes were evident in the testing dataset (panel B of Figure 
22). 

Table 9. Perennial-ephemeral and ephemeral-perennial misclassifications for the final refined NE model 
Reach Code State Region Dataset Actual Predicted 

OKNE9440_B OK NE Training E P 
TNNE9109_B TN NE Training E P 
VANE9099_B VA NE Training P E 

 

No incorrect predictions between ephemeral and perennial occurred using the final NE refined 
model on the testing dataset.   

 

NE Refined Model – Confusion Matrices 
A                                                                                     B 
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2.4.7 SE Final beta model selection 
After consultation with the PDT and RSC, the final model selected for the Southeast was the 
Version 9 refinement of the SE base model. The Version 9 refinement differs from the SE base 
model as follows: 

• BMI_score_alt4 (abundance and diversity only): replaced perennial_NC_taxa, 
perennial_NC_live_taxa, and TolRelAbund. 

• Drainage Area (<0.1 or greater than 0.1 mi2): originally a continuous metric ranging 
from 0.00283‒579 mi2, drainage area was binned into discrete groups (less than 0.1 mi2 
and greater than or equal to 0.1 mi2). These discrete groups were based on visual 
interpretation of the metric distributions across ephemeral, intermittent, and perennial 
classes, and through trial-and-error testing. 

• Total abundance of BMI: Originally a continuous metric whose counts ranged from 0 to 
105 in the SE region, Total Abundance was binned into the following discrete groupings: 

- Total Abundance <1 
- Total Abundance between 1 and 10 
- Total Abundance between 11 and 32 
- Total Abundance >33 

These discrete groups were based on visual interpretation of the metric distributions 
across ephemeral, intermittent, and perennial classes, and through trial-and-error 
testing. 

• BankWidthMean: no change 
• Average precipitation in May – July: no change 
• Substrate sorting score: no change 
• Upland rooted plants score: no change 

Performance of the final SE refined model (Figure 23) is similar to that of the SE base model 
(Figure 19). 
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SE Refined Model – Confusion Matrices 
A                                                                                     B 

    
Figure 23. Performance of the selected final refined SE model based on the (A) training and (B) testing datasets. 
X-axis shows actual flow duration class and Y-axis shows predicted flow duration class. Blue diagonal indicates 
correct predictions. P = perennial, I = intermittent, and E = ephemeral. Shading of boxes in matrices describe the 

proportion of reach samples in each dataset. 
 

Using the final refined SE model, one sample (site ALSE8675_B) in the training dataset 
continued to incorrectly predict ephemeral when the actual classification was perennial (as 
highlighted in the top-right and bottom-left corners of the confusion matrices in Figure 23). In 
addition, two reaches in the training dataset incorrectly predicted perennial when the actual 
classification was ephemeral. This misclassification also occurred in one of the samples in the SE 
testing dataset. The sites with these ephemeral-perennial and perennial-ephemeral 
misclassifications are shown in Table 10. 

Table 10. Perennial-ephemeral and ephemeral-perennial misclassifications for the final refined SE model 
Reach Code State Region Dataset Actual Predicted 
ALSE8675_B AL SE Training P E 
FLSE9509_B FL SE Training E P 

TXSE9496_BO TX SE Training E P 
TXSE9467_V TX SE Testing E P 

 

2.4.7.1 Increased confidence required for classifications 
Random forest models created for classification traditionally make assignments based on the 
class that receives the highest number of votes by each tree in the “forest.” Thus, in a three-
way decision (ephemeral, intermittent, or perennial), the class with the most votes could 
receive much less than a majority of all votes—as low as 34%. Given concern that such low-
confidence classifications may not provide sufficient defensibility for some management 
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decisions, approaches to distinguish between high- and low-confidence classifications were 
explored.  

Increasing the minimum number of votes required to make a confident classification from 33% 
to 100% by increments of 1% was explored to understand the effect on classification. When the 
selected refined model was applied to a novel test reach and a single class received a sufficient 
percent of votes, then the reach was classified accordingly. If none met the minimum but the 
combined percent of votes for intermittent and perennial classes exceeded the minimum, then 
the reach was classified as at least intermittent. In all other cases, the reach was classified as 
need more information. This decision framework reflects that distinguishing between 
ephemeral and at least intermittent reaches is a high priority use of the beta SDAMs for the NE 
and SE. The percent of reaches under each of the five possible classifications with increasing 
minimum vote agreement thresholds was calculated. 

The minimum proportion threshold of 0.5 was set for flow classification, which is the same 
threshold as used in the AW, WM, and GP beta methods. At the minimum required proportion 
of votes of 0.5 (or 50%) in the final refined NE model, only 4.3% of reach samples in the training 
dataset (1.8% of reach samples in the test dataset) were classified as at least intermittent, and 
none were classified as need more information (Figure 24A, B). At a minimum required 
proportion of votes of 0.5 in the final refined SE model, 2.0% of reach samples in the training 
dataset (8.6% of reach samples in the test dataset) were classified as at least intermittent, and 
none were classified as need more information (Figure 24C, D). Classifications of at least 
intermittent first appear with a minimum proportion of 0.39 (NE) and 0.35 (SE) in the training 
datasets and 0.43 (NE) and 0.36 (SE) in the testing datasets, whereas classifications of need 
more information appear at 0.51 in both models. Although it cannot be ruled out, it is unlikely 
that the beta SDAMs for the NE and SE will result in a classification of need more information.  
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Figure 24. Influence of the minimum proportion of votes required to make a classification on n (the number of 
reaches in each class) for the (A) final refined Northeast model training data, (B) final refined Northeast model 

testing data, (C) final refined Southeast model training data, and (D) final refined Southeast model testing data. 
NMI: Need more information. ALI: At least intermittent. P: Perennial. I: Intermittent. E: Ephemeral. The vertical 
black line represents a minimum proportion of required votes of 0.5. The two red lines represent the proportion 

of votes that first result in classification of ALI (the lower line) or NMI (the upper line) for the datasets. 
 

Note, after updating the voting threshold to a requirement of 50% for classification, there were 
some changes to the perennial-ephemeral and ephemeral-perennial misclassifications. Three of 
these errors, all of which occurred in the training dataset, were changed from their original 
prediction to At Least Intermittent. For the case of reach perennial ALSE8675_B, this caused an 
originally incorrect Ephemeral prediction of to be updated to a correct prediction of At Least 
Intermittent (highlighted in green in Table 10, below). For the other two reaches (OKNE9440_B 
and FLSE9509_B) whose predictions were changed by the updated voting threshold, their 
originally incorrect Perennial predictions were changed to At Least Intermittent (highlighted in 
yellow in Table 11, below).  

 
 
 

A B 

C

 
D
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Table 11. Updated “Big Error” classifications after increased vote threshold (50%).  
Reach Code State Region Dataset Actual 

Class 
Original Prediction 
(Majority Voting) 

Updated Prediction 
(50% Threshold) 

OKNE9440_B OK NE Training E P ALI 
TNNE9109_B TN NE Training E P P 

VANE9099_B VA NE Training P E E 
ALSE8675_B AL SE Training P E ALI 
FLSE9509_B FL SE Training E P ALI 

TXSE9496_BO TX SE Training E P P 
TXSE9467_V TX SE Testing E P P 

 

2.4.7.2 Evaluation of single indicators of at least intermittent flow 
Single indicators can supersede a model classification of ephemeral to change it to the 
classification of at least intermittent. Single indicators can provide technical benefits (i.e., 
improved accuracy) as well as non-technical benefits, such as rapidity of determining flow 
duration and greater acceptance of the SDAM, given existing public understanding of, for 
example, the role of streamflow duration in supporting biological organisms. Single indicators 
are also used in some other SDAMs (e.g., Nadeau et al. 2015, Dorney and Russell 2018, Mazor 
et al. 2021a); for instance, the presence of fish, iron-oxidizing bacteria, hydric soils, and/or 
aquatic vertebrates (amphibians and reptiles), among others. 

Single indicators used in previous SDAMs were evaluated. The number of instances where 
inclusion of a prior single indicator would correct a misclassification (i.e., the reach was truly 
intermittent or perennial) and would introduce a misclassification/mistake (i.e., the reach was 
truly ephemeral) was quantified. All single indicators investigated had minimal impact on 
performance or introduced more errors than were corrected (Figure 25). Based on these 
results, the RSC did not recommend including any of the evaluated single indicators in the beta 
SDAMs NE and SE.  

NE Refined Model - Single Indicator Performance 
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Figure 25. Influence of single indicators on (A) final NE refined model performance and (B) final SE refined model 

performance. 
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2.4.8 Performance of the Beta SDAMs NE and SE 
Performance of the selected refined models after assigning a minimum proportion voting 
threshold of 50% for the beta SDAMs NE and SE are summarized in Table 12. The overall 
classification accuracy among the three classes (perennial, intermittent, ephemeral) for the NE 
model was 99% in the training dataset (and 72.2% in the testing dataset), but this accuracy 
increased to 99.5% in the training dataset (and 92.2% in the testing dataset) when only 
ephemeral versus at least intermittent classifications were considered (i.e., both blue and green 
cells in Table 12 were treated as correct). The overall classification accuracy among the three 
classes for the SE model was 98% in the training dataset (and 70% in the testing dataset), but 
this accuracy increased to 98% in the training dataset (and 91.4% in the testing dataset) when 
only ephemeral versus at least intermittent classifications were considered. 

Table 12. Classifications of the final version of the beta SDAM NE and SE. Blue cells indicate correct 
classifications of perennial, intermittent, at least intermittent, and ephemeral reaches, whereas green cells 

indicate correct classifications of ephemeral versus at least intermittent. Green numbers represent the reach 
visits with matching actual and predicted classes and red numbers are reach visits with non-matching actual and 

predicted classes. 
 

 
NE Model: Actual streamflow duration class  

(augmented data not included) 
Predicted 
Class 

Ephemeral 
(Training) 

Ephemeral 
(Testing) 

Intermittent 
(Training) 

Intermittent 
(Testing) 

Perennial 
(Training) 

Perennial 
(Testing) 

Ephemeral 87 9 1 2 0 0 
Intermittent 0 4 194 29 0 12 
ALI 1 1 0 4 2 0 
Perennial 0 0 0 6 147 23 

Total NSE samples: 522 
 

 
SE Model: Actual streamflow duration class 

(augmented data not included) 
Predicted 
Class 

Ephemeral 
(Training) 

Ephemeral 
(Testing) 

Intermittent 
(Training) 

Intermittent 
(Testing) 

Perennial 
(Training) 

Perennial 
(Testing) 

Ephemeral 61 14 4 2 0 0 
Intermittent 0 2 141 16 1 6 
ALI 0 1 0 4 0 1 
Perennial 1 1 0 8 116 15 

Total SE samples: 394 
 

2.5 Disturbed Sites 
Using the LandUse indicator to identify reaches that were disturbed (LandUse = urban or 
agriculture, alone or in combination with any other land use category) and not disturbed 
(LandUse does not include urban or agriculture) at the time of the site visit, there were 37 
individual reaches identified as disturbed during at least one site visit with a total of 55 
disturbed samples (before augmentation) in the Northeast Region. There were 45 disturbed 
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samples in the training dataset and 10 in the testing dataset. These tallies focus on the samples 
of the original dataset before augmentation (n = 522 NE).  

Among the samples identified as disturbed by human activity in the Northeast testing dataset 
(n=10), accuracy among all classes was 60%, which improved to 90% when only ephemeral 
versus at least intermittent classifications were considered. For samples in the Northeast 
testing dataset that were not disturbed (n=80), the accuracy values of the disturbed sites were 
74% PvIvE and 93% EvALI.  

For the Southeast dataset, the LandUse indicator flagged 16 individual reaches identified as 
disturbed during at least one site visit with a total of 28 disturbed samples (before 
augmentation). There were 26 disturbed samples in the training dataset and two in the testing 
dataset. These tallies focus on the samples of the original dataset before augmentation (n = 394 
SE). 

Among the samples identified as disturbed by human activity in the Southeast testing dataset, 
(n=2) accuracy among all classes was 50%, which did not change when only ephemeral versus at 
least intermittent classifications were considered. For samples in the Southeast testing dataset 
that were not disturbed (n=68), the accuracy values were 72% PvIvE and 93% EvALI.  

3 Performance of beta SDAMs NE and SE against other methods 
For reference, a comparison of the results using nearby SDAMs (the Ohio, North Carolina, and 
beta Great Plains methods) are included in this section (Table 13 ). To apply the beta GP 
method, a metric called “Strata” was created for the NE and SE datasets so that the GP Strata 
was “Northern” for the NE region and “Southern” for the SE region. The following analysis does 
not include oversampling for the training datasets; for sites in the NE the Northern GP was 
selected and for sites in the SE the Southern GP was selected when applying the beta SDAM for 
the GP.  

Table 13. Comparing performance of NE and SE beta SDAMs to the OH, NC, and beta GP SDAMs 
 OH  NC  Beta GP  Beta NE or SE  

Dataset Region # 
samples 

% EvALI 
Correct  

% PvIvE 
Correct 

% EvALI 
Correct 

% PvIvE 
Correct 

% EvALI 
Correct  

% PvIvE 
Correct 

% EvALI 
Correct 

Testing SE 70 90% 67% 94% 80% 93% 71% 91% 

Testing NE 90 86% 51% 90% 53% 90% 72% 92% 

Testing CB 33 79% 64% 88% 55% 82% 42% 73% 

 

3.1 Performance of the beta SDAM SE using the U.S.  Caribbean data 
While there were not enough samples (19 reaches, 33 site visits) to develop a U.S. Caribbean-
specific model, the performance of the final refined SE model using the U.S. Caribbean data as a 
novel dataset was assessed (Figure 26).  
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Figure 26. Confusion matrix showing performance of U.S. Caribbean data (33 samples from 19 reaches) using the 
final refined SE model. 

 

The accuracy of the refined SE model when applied to the data collected at sites in the U.S. 
Caribbean was 42% correct PvIvE (increased to 73% correct for EvALI). The following “Big Error” 
was noted for the Caribbean dataset: 

Reach Code State Region Dataset Actual Predicted 
PRSE9540_B PR CB Testing P E 

 

4 Data and code availability 
All data used to develop the method and R code used in analysis are available at the following 
repository: https://doi.org/10.23719/1528743. 

5 Next steps 
The beta SDAMs for the NE and SE are being made available for one year for public review and 
comment while the additional data at the study sites collected in 2022 and 2023 are processed, 
after which final methods will be developed and released to replace the beta methods. 
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8 Appendix A: Glossary of Terms Used 
Streamflow Class Description 
Ephemeral reaches Flow only in direct response to precipitation. Water typically flows only during 

and/or shortly after large precipitation events, the streambed is always above 
the water table, and stormwater runoff is the primary water source. 

Intermittent reaches Contain sustained flowing water for only part of the year, typically during the 
wet season, where the streambed may be below the water table or where the 
snowmelt from surrounding uplands provides sustained flow. The flow may vary 
greatly with stormwater runoff. 

Perennial reaches Contain flowing water continuously during a year of normal rainfall, often with 
the streambed located below the water table for most of the year. Groundwater 
typically supplies the baseflow for perennial reaches, but the baseflow may also 
be supplemented by stormwater runoff or snowmelt. 

At Least Intermittent (ALI) Contain more than ephemeral flow but cannot be determined with high 
confidence if it is intermittent or perennial  

  

Performance Measure Description 
PvIvE Overall measure of accuracy. Ability of model to correctly classify between 

Perennial versus Intermittent versus Ephemeral. Calculated as the percent of 
reach-visits classified correctly (weighted by the number of visits per reach). 

EvALI Ability of model to correctly classify between Ephemeral and At Least 
Intermittent (I or P). Calculated as the percent of reach-visits classified correctly 
(weighted by the number of visits per reach). 

IvEdry Ability of the model to correctly classify Ephemeral vs Intermittent when sites 
are dry. Calculated as the percent of dry reach-visits classified correctly. 

Precision For reaches that have multiple visits, are they consistently predicted correctly? 
Calculated as the proportion of visits within a reach with the most frequent 
classification, averaged across reaches. 

  

Dataset Description 

Training A subset of 80% of the total reaches that was used for model development. This 
subset was randomly selected, stratifying by region (i.e., NE vs SE) and actual 
streamflow duration class (i.e., perennial, intermittent, and ephemeral). 

Testing A subset of 20% of the total reaches that was used for model testing and is 
independent from the training reaches. This subset was randomly selected, 
stratifying by region (i.e., NE vs SE) actual streamflow duration class (i.e., 
perennial, intermittent, and ephemeral). 

Note: Data are divided by reach so that all visits at a single reach are included either in training or testing 

Candidate Metric Description Type 
ActiveFloodplain_score (NC) Scoring based on visual estimate of floodplain characteristics 

adjacent to stream channel. Higher scores indicate greater 
evidence and continuity of adjacent floodplain. 

Geom 

alglive_cover_score Visual estimate of live algal cover on the streambed within the 
study reach 

Bio (algae) 

alglivedead_cover_score Visual estimate of the percent of streambed covered by live or 
dead algal growth 

Bio (algae) 
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Candidate Metric Description Type 
AlluvialDep_score (NC) Scoring based on visual estimate of recently deposited alluvium 

in the channel and on the floodplain. Higher scores indicate 
greater amounts of fresh alluvium observed. 

Geom 

Amphib_abundance Abundance of aquatic life stages of amphibians in the channel Bio (verts) 
Amphib_richness Richness of amphibians with aquatic life stages in the channel Bio (verts) 
BankWidthMean Mean bankfull width (m) Geom 
BMI_score (NC) Original ordinal scoring of benthic macroinvertebrates based on 

abundance, richness and relative abundance of tolerant taxa 
(original list). See table below for detailed description. 

Bio (aquatic 
inverts) 

BMI_score_alt1 Simplified alternative 1 for ordinal scoring of benthic 
macroinvertebrates based on abundance, richness, and relative 
abundance of tolerant taxa (simplified list of tolerant taxa). See 
table below for detailed description. 

Bio (aquatic 
inverts) 

BMI_score_alt2 Simplified alternative 2 for ordinal scoring of benthic 
macroinvertebrates based on total abundance and richness of 
non-tolerant taxa (simplified list of tolerant taxa). See table 
below for detailed description. 

Bio (aquatic 
inverts) 

BMI_score_alt3 Simplified alternative 3 for ordinal scoring of benthic 
macroinvertebrates based on total abundance and richness of 
non-tolerant taxa (original list). See table below for detailed 
description. 

Bio (aquatic 
inverts) 

BMI_score_alt4 Simplified alternative 4 for ordinal scoring of benthic 
macroinvertebrates based on total abundance and richness. See 
table below for detailed description. 

Bio (aquatic 
inverts) 

ChannelDimensions_score 
(NM) 

Scoring based on measured or visual estimate of the extent of 
channel entrenchment and connectivity to the floodplain. 
Higher scores are less confined (less incised) channels. 

Geom 

Continuity_score (NC) Scoring based on visual estimate of the continuity of bank and 
streambed development. Higher scores indicate greater degree 
of channel development and continuity of bed and banks. 

Geom 

Crayfish_abundance Abundance of crayfish and palaeomonid shrimp (Decapoda) 
within the channel 

Bio (aquatic 
inverts) 

Depositional_score (NC) Scoring based on visual estimate of the extent of alluvial bars 
and/or benches present in the channel. Higher scores indicate 
greater prevalence of the features. 

Geom 

DifferencesInVegetation_scor
e (NM) 

Differences in vegetation between the riparian corridor and 
adjacent uplands score. Higher scores indicate a more distinct 
riparian corridor. 

Bio (veg) 

DRNAREA_mi2 Drainage area (mi2) measured using USGS StreamStats or 
National Mapper 

GIS 

Elev_m Watershed elevation (m) retrieved from StreamCat database  GIS 
EPT_abundance Abundance of mayflies, stoneflies, or caddisflies (i.e., 

Ephemeroptera, Plecoptera, Trichoptera, EPT) 
Bio (aquatic 
inverts) 

EPT_taxa Number of EPT families Bio (aquatic 
inverts) 

FibrousRootedPlants_score 
(NC) 

Scores based on visual estimate of the extent and distribution of 
non-woody, small diameter roots of water-intolerant plants in 
the streambed. Higher scores indicate lower density and 
coverage of roots in streambed. 

Bio (veg) 
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Candidate Metric Description Type 
fishabund_score2 Scoring of fish abundance (except non-native mosquitofish) in 

the channel 
Bio (verts) 

fp_entrenchmentratio_mean Mean entrenchment ratio (capped at 2.5) Geom 

GOLD_abundance Abundance of Gastropoda, Oligochaeta, and Diptera (GOLD) 
taxa 

Bio (aquatic 
inverts) 

GradeControl_score Scores based on visual estimate of the extent and kinds of grade 
control features in the channel. Higher scores indicate larger 
size, more prevalence, and/or permanence of structures acting 
as grade controls in the channel. 

Geom 

Headcut_score Scores based on visual estimate of the size and number of 
headcuts in the channel. Higher scores indicate presence and 
greater vertical drop in bed associate with headcut(s) in the 
channel 

Geom 

HydricSoils_score (NC) Presence/absence of hydric soils within the study reach Hydro 
Hydrophytes_inchannel Number of hydrophytic plant species (FACW or OBL) observed 

within the study reach channel 
Bio (veg) 

hydrophytes_present  Number of hydrophytic plant species (FACW or OBL) observed 
within the study reach channel and 1/2 channel width of the 
stream on either bank 

Bio (veg) 

hydrophytes_present_noflag Number of hydrophytic plant species (FACW or OBL) observed 
within the study reach channel and 1/2 channel width of the 
stream on either bank (excluding taxa with unusual distributions 
flagged by the field crew) 

Bio (veg) 

iofb_score (NC) Scores based on the visual estimate of the abundance of iron-
oxidizing bacteria and fungi. Higher scores indicate greater 
abundance of iron oxidizing bacteria and fungi. 

Bio (other) 

LeafLitter_score (NC) Scores based on the visual extent of the streambed covered by 
leaf litter. Higher scores indicate greater proportion of the 
streambed covered by leaves. 

Hydro 

liverwort_cover_score Liverwort cover on the streambed. Higher scores indicate higher 
liverwort cover on streambed. 

Bio (veg) 

MeanSnowPersistence_01 Mean snow persistence (% of time between 1 Jan to 3 July) 
within a 1-km radius of the reach 

GIS 

MeanSnowPersistence_05 Mean snow persistence (% of time between 1 Jan to 3 July) 
within a 5-km radius of the reach 

GIS 

MeanSnowPersistence_10 Mean snow persistence (% of time between 1 Jan to 3 July) 
within a 10-km radius of the reach 

GIS 

Mollusk_abundance Abundance of aquatic mollusks in the channel Bio (aquatic 
inverts) 

Mollusk_taxa Richness of aquatic mollusk families in the channel Bio (aquatic 
inverts) 

moss_cover_score Moss cover on the streambed. Higher scores indicate higher 
moss cover on streambed. 

Bio (other) 

NaturalValley_score (NC) Scores based on the visual estimate of the extent of valley 
definition (proportion of catchment area sloping to the valley 
bottom). Higher scores indicate greater proportion of the 
catchment area slopes to the valley bottom or channel. 

Geom 

Noninsect_abundance Abundance of non-insect aquatic invertebrate taxa in the 
channel 

Bio (aquatic 
inverts) 
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Candidate Metric Description Type 
Noninsect_taxa Richness of non-insect aquatic invertebrate taxa in the channel Bio (aquatic 

inverts) 
OBL_inchannel Number of OBL hydrophytic plant species observed within the 

study reach channel 
Bio (veg) 

OBL_present Number of OBL hydrophytic plant species observed within the 
study reach channel and 1/2 channel width of the stream on 
either bank 

Bio (veg) 

OBL_present_noflag Number of OBL hydrophytic plant species observed within the 
study reach channel and 1/2 channel width of the stream on 
either bank (excluding taxa with unusual distributions flagged by 
the field crew) 

Bio (veg) 

OCH_abundance Abundance of aquatic Odonata, Coleoptera, and Heteroptera 
(OCH) in the channel 

Bio (aquatic 
inverts) 

ODL_score Scores based on the visual estimate of the size and distribution 
of organic debris accumulations in and along channels. Higher 
scores indicate larger and more extensive accumulations. 

Hydro 

PctShading Percent shading on the streambed Bio (veg) 
perennial_NC_abundance 
(NC) 

Abundance of NC Method perennial invertebrate indicator taxa Bio (aquatic 
inverts) 

perennial_NC_live_abundanc
e (NC) 

Abundance of NC Method perennial invertebrate indicator taxa 
(living specimens only) 

Bio (aquatic 
inverts) 

perennial_NC_taxa (NC) Number of NC Method perennial invertebrate indicator taxa Bio (aquatic 
inverts) 

perennial_PNW_abundance 
(PNW) 

Abundance of PNW SDAM perennial indicator invertebrate taxa  Bio (aquatic 
inverts) 

perennial_PNW_live_abunda
nce (PNW) 

Abundance of PNW SDAM perennial indicator invertebrate taxa 
(living specimens only) 

Bio (aquatic 
inverts) 

perennial_PNW_taxa Number of PNW SDAM perennial indicator taxa Bio (aquatic 
inverts) 

ppt 30-y normal mean annual GIS 
ppt.11121 Average of 30-year normal mean monthly precipitation for 

November, December, and January 
GIS 

ppt.234 Average of 30-year normal mean monthly precipitation for 
February, March, and April 

GIS 

ppt.567 Average of 30-year normal mean monthly precipitation for May, 
June, and July 

GIS 

ppt.8910 Average of 30-year normal mean monthly precipitation for 
August, September, and October 

GIS 

ppt.m01 30-year normal mean January precipitation GIS 
ppt.m02 30-year normal mean February precipitation GIS 
ppt.m03 30-year normal mean March precipitation GIS 

ppt.m04 30-year normal mean April precipitation GIS 
ppt.m05 30-year normal mean May precipitation GIS 
ppt.m06 30-year normal mean June precipitation GIS 
ppt.m07 30-year normal mean July precipitation GIS 
ppt.m08 30-year normal mean August precipitation GIS 
ppt.m09 30-year normal mean September precipitation GIS 



64 
 

Candidate Metric Description Type 
ppt.m10 30-year normal mean October precipitation GIS 
ppt.m11 30-year normal mean November precipitation GIS 
ppt.m12 30-year normal mean December precipitation GIS 
REGION Northeast or Southeast GIS 

Richness Total richness of aquatic invertebrate families Bio (aquatic 
inverts) 

RifflePoolSeq_score (NC) Visual estimate of the diversity and distinctiveness of riffles, 
pools, and other flow-based microhabitats. Higher scores 
indicate more distinctive riffles, pools, and other flow habitats 
with clear transitions within the reach. 

Geom 

SedimentOnPlantsDebris_sco
re (NC) 

Visual estimate of the extent of evidence of sediment 
deposition on plants and on debris within the floodplain. Higher 
scores indicate that sediment deposition was more prevalent 
throughout the reach. 

Hydro 

Sinuosity_score (NC) Scored channel sinuosity. Higher scores indicate more sinuous 
channels. 

Geom 

Slope Reach slope as measured with a handheld clinometer Geom 
StreamOrder Strahler stream order from USGS StreamStats synthetic network GIS 
SubstrateSorting_score (NC) Visual estimate of the extent of evidence of substrate sorting 

within the channel. Higher scores indicate greater sorting of 
substrate within the channel relative to surrounding uplands. 

Geom 

temp11121 Average of 30-year normal mean monthly air temperature for 
November, December, and January 

GIS 

temp234 Average of 30-year normal mean monthly air temperature for 
February, March, and April 

GIS 

temp567 Average of 30-year normal mean monthly air temperature for 
May, June, and July 

GIS 

temp8910 Average of 30-year normal mean monthly air temperature for 
August, September, and October 

GIS 

temp.m01 30-year normal mean January air temperature GIS 
temp.m02 30-year normal mean February air temperature GIS 

temp.m03 30-year normal mean March air temperature GIS 
temp.m04 30-year normal mean April air temperature GIS 
temp.m05 30-year normal mean May air temperature GIS 
temp.m06 30-year normal mean June air temperature GIS 
temp.m07 30-year normal mean July air temperature GIS 
temp.m08 30-year normal mean August air temperature GIS 

temp.m09 30-year normal mean September air temperature GIS 
temp.m10 30-year normal mean October air temperature GIS 
temp.m11 30-year normal mean November air temperature GIS 
temp.m12 30-year normal mean December air temperature GIS 
tmax Maximum annual temperature (PRISM 30-year normal) GIS 
tmean Mean annual temperature (PRISM 30-year normal) GIS 

tmin Minimum annual temperature (PRISM 30-year normal) GIS 
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Candidate Metric Description Type 
TolRelAbund Relative abundance of tolerant aquatic invertebrate taxa 

(original list) 
Bio 

TotalAbundance Total abundance of aquatic invertebrates Bio (aquatic 
inverts) 

UplandRootedPlants_score 
(NC) 

Scoring based on visual estimate of the extent of upland rooted 
plants (FAC, FACU, UPL, NI) growing within the streambed. 
Higher scores indicate fewer upland plants in the streambed. 

Bio (veg) 

WoodyJams_number Number of woody jams present within the study reach channel 
(or up to 10 m outside of the study reach). Woody jams much 
completely span the active channel and be in contact with the 
streambed. Contain at least 3 large pieces (>1 m long and >10 
cm diameter).  Cause sufficient blockage to disrupt flow of 
water or sediment under flowing conditions.  

Hydro 
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Detailed descriptions of ordinal benthic macroinvertebrate metric scores based on the metric used in the NC Method (NCDWQ 2010) evaluated 
for refining models for the Northeast and Southeast regions. 

Metric abbrev Ordinal scores for benthic macroinvertebrate metrics 
 0 1 2 3 
BMI_score1 Total abundance = 0 Total abundance >0 Total abundance ≥4 and total 

relative abundance of 
tolerant taxa <90% 

Total abundance ≥10 and 
richness ≥3 and total relative 
abundance of tolerant taxa 
<90% OR Richness ≥5 and 
total relative abundance of 
tolerant taxa <90% 

BMI_score_alt12 Total abundance = 0 Total abundance >0 Total abundance ≥4 and total 
relative abundance of 
simplified list of tolerant taxa 
<90 

Total abundance ≥10 and 
richness ≥3 and total relative 
abundance of simplified list 
of tolerant taxa <90% OR 
Richness ≥5 and total relative 
abundance of simplified list 
of tolerant taxa <90% 

BMI_score_alt22 Total abundance = 0 Total abundance 1 to 2 
individuals of non-tolerant 
taxa based on the simplified 
list of tolerant taxa 

Total abundance ≥4 and at 
least 2 non-tolerant taxa 
present based on the 
simplified list of tolerant taxa 

Total abundance ≥10 and at 
least 3 non-tolerant taxa 
present based on the 
simplified list of tolerant taxa 

BMI_score_alt31 Total abundance = 0 Total abundance 1 to 2 
individuals of non-tolerant 
taxa OR only tolerant 
individuals present 

Total abundance ≥4 and at 
least 2 non-tolerant taxa 
present 

Total abundance ≥10 and at 
least 3 non-tolerant taxa 
present 

BMI_score_alt4 Total abundance = 0 Total abundance 1 to 3 Total abundance ≥4 Total abundance ≥10 and 
richness ≥3 OR Richness ≥5 

1 Uses original list of tolerant taxa includes: Annelida, Hydracarina, Turbellaria, Nematoda, Nematomorpha, Physidae, Amphipoda, Isopoda, Chironomidae, 
Culicidae, Psychodidae, Libellulidae, Coenargionidae, Belastomatidae, Corixidae, and Haliplidae 

2 Uses simplified list of tolerant taxa includes: all non-insects (except Bivalvia and Decapoda), Culicidae, and Chironomidae 
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